[1]马建国,孟 刚,陈 路,等.三峡近区500 kV出线雷电综合治理效果分析[J].电瓷避雷器,2020,(03):167-174.[doi:10.16188/j.isa.1003-8337.2020.03.027]
 MA Jianguo,MENG Gang,CHEN Lu,et al.Analysis on the Effect of Comprehensive Lightning Protection for 500 kV Out Lines in Three Gorges Area[J].,2020,(03):167-174.[doi:10.16188/j.isa.1003-8337.2020.03.027]
点击复制

三峡近区500 kV出线雷电综合治理效果分析()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
167-174
栏目:
避雷器
出版日期:
2020-06-25

文章信息/Info

Title:
Analysis on the Effect of Comprehensive Lightning Protection for 500 kV Out Lines in Three Gorges Area
作者:
马建国1 孟 刚23 陈 路23 李 健23 谷山强23 赵 淳23 吴 敏23
(1.国网湖北省电力有限公司, 武汉 430077; 2.国网电力科学研究院武汉南瑞有限责任公司, 武汉 430074; 3.电网雷击风险预防湖北省重点实验室, 武汉 430074)
Author(s):
MA Jianguo1 MENG Gang23 CHEN Lu23 LI Jian23 GU Shanqiang23 ZHAO Chun23 WU Min23
(1.State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China; 2.Wuhan Nanrui Electric Co., Ltd.,State Grid Electric Power Research Institute,Wuhan 430074, China; 3. Hubei Provincial Key Laboratory of Lightning Strike Risk Prevention, Wuhan 430074, China)
关键词:
防雷措施 效果分析 标准偏回归系数 防护效率 三峡近区 500 kV出线
Keywords:
lightning protection measure effect analysis standard partial regression coefficient protection effectiveness Three Gorges area 500 kV transmission line.
DOI:
10.16188/j.isa.1003-8337.2020.03.027
摘要:
雷害是架空输电线路跳闸的首要原因,为降低线路雷击跳闸率,提升线路雷电防护水平,运行单位需对输电线路进行雷害风险评估,并针对高雷害风险等级杆塔采取差异化的防雷措施。目前针对防雷措施治理效果分析方法主要通过对比改造前后线路雷击跳闸次数或雷击跳闸率的变化,该方法简单直观,但由于一条线路往往采取多种防雷措施,以及改造前后雷电活动的差异性等造成综合防雷效果的评价实施非常困难。通过分析三峡近区2000-2018年雷电活动情况、跟踪15条500 kV出线防雷措施的滚动实施情况及其历年的雷击运行数据,提出采用多重线性回归分析方法计算各种防雷措施安装数量与雷击跳闸率的标准偏回归系数,从而衡量各种防雷措施对降低雷击跳闸率贡献大小; 同时,提出采用线路安装防雷措施部分与未安装部分雷击跳闸率的变化率来量化分析各种防雷措施的防护效率,以此计算得到了线路避雷器、可控放电避雷针的保护效率,与现场运行经验一致。三峡近区线路的雷电综合治理效果的分析方法和结论可为我国线路差异化防雷的实施提供一定的参考。
Abstract:
Lightning hazard is the main reason for the tripping of overhead transmission lines. In order to reduce the lines tripping rate and improve the lightning protecting level, the operating companies used to conduct lightning risk assessment on the transmission lines and take differentiated lightning protection measures for the high lightning risk towers. At present, the analysis method for the effect of lightning protection is mainly comparing the operating performance of transmission lines before and after the rebuilding, such as tripping times or rates. This method is simple and intuitive. However, it is very difficult to evaluate the comprehensive lightning protection effect due to several lightning protection measures were taken on a line and the differences in lightning activities before and after the rebuilding. By analyzing the lightning activity of Three Gorges area from 2000 to 2018, tracking the rolling implementation of lightning protection measures for 15 transmission lines at 500 kV and their lightning strike operation data, we proposed a multiple linear regression analysis method to calculate the standard partial regression coefficient of various lightning protection measures and the lightning striking rate, so as to measure the contribution of various lightning protection measures to reduce the lightning trip rate. Meanwhile, we propose to use the change rate of the lightning tripping rates which a line installed lightning protection measures parts and the uninstalled parts to quantify the protection efficiency of various lightning protection measures. In this way, we calculated the protection efficiency of line arresters and controllable discharge lightning rods, and the results are consistent with actual operating experience. The method and conclusion of the effect analysis of comprehensive lightning protection in Three Gorges area provide a reference for the implementation of differentiated lightning protection in China.

参考文献/References:

[1] 阮羚,谷山强,赵淳,等. 鄂西三峡地区220 kV线路差异化防雷技术与策略[J].高电压技术, 2012, 38(01): 157-166.
RUAN Ling, GU Shanqiang, ZHAO Chun, et al. Technology and strategy of differentiated lightning protection for 220 kV transmission line in Three Gorges Area of Western Hubei [J]. High Voltage Engineering, 2012, 38(01):157-166.
[2] 黄炜纲. 三峡500 kV双回同杆并架出线方案的防雷性能[J].中国电力,2000(5):57-61.
HUANG Weigang. Lightning performance of 500 kV double-circuit line on same tower of Three Gorges outgoing lines [J]. Electric Power, 2000(5):57-61.
[3] 谷定燮,聂定珍. 三峡500 kV出线同杆双回线路雷电性能研究[J].高电压技术,1999(3):14-17.
GU Dingxie, NIE Dingzhen. The Study of lightning performance of the 500 kV double-circuit transmission line from Three Gorges [J]. High Voltage Engineering, 1999(3):14-17.
[4] 董晓虎,杜勇,周玎. 三峡近区500 kV电网防雷综合治理研究[J].湖北电力,2011,35(06):35-37.
DONG Xiaohu, DU Yong, ZHOU Ding. Research on the comprehensive lightning protection for 500 kV power grid near the Three Gorges Area [J]. Hubei Electric Power, 2011,35(06):35-37.
[5] 江全才,魏飞翔,马骁旭,等. 三峡近区500 kV输电线路差异化防雷技术研究[J].电瓷避雷器, 2014,(01): 61-67.
JIANG Quancai, WEI Feixiang, MA Xiaoxu, et al. Study on differentiation technology of lightning protection for 500 kV transmission line in Three Gorges Area [J]. Insulators and Surge Arresters, 2014,(01):61-67.
[6] 陈家宏,吕军,钱之银,等. 输电线路差异化防雷技术与策略[J].高电压技术,2009,35(12):2891-2902.
CHEN Jiahong, LV Jun, QIAN Zhiyin, et al. Differentiation technology and strategy of lightning protection for transmission lines [J]. High Voltage Engineering, 2009,35(12):2891-2902.
[7] 赵淳,阮江军,李晓岚,等. 输电线路综合防雷措施技术经济性评估[J].高电压技术,2011,37(02):290-297.
ZHAO Chun, RUAN Jiangjun, LI Xiaolan,et al. Technology and economy evaluation of comprehensive transmission line lightning protection measure [J]. High Voltage Engineering, 2011,37(02):290-297.
[8] Z Chun et al. Research on differentiated lightning protection comprehensive management for the 500 kV power network in the area near the Three Gorges Project[J]. IEEE Transactions on Power Delivery, 2012, 27(1): 337-352.
[9] 王剑,万帅,陈家宏,谭进,等. 三峡—上海±500 kV同塔双回直流输电用线路避雷器的雷电防护效果分析[J].高电压技术,2013,39(02):450-456.
WANG Jian, WAN Shuai, CHEN Jiahong, et al. Analysis of lightning protection with line surge arrester for the Three Gorges-Shanghai ±500 kV Double-circuit DC transmission line on the same tower [J]. High Voltage Engineering, 2013,39(02):450-456.
[10] 万德春,朱晔,雷梦飞,等. 三峡近区电网防雷综合治理研究及效果评估[J].陕西电力,2014,42(02):48-50.
WAN Dechun, ZHU Ye, LEI Mengfei, et al. Research and evaluation on comprehensive lightning protection management for the power grid near Three Gorges Area [J]. Shanxi Electric Power, 2014,42(02):48-50.
[11] J He, X Wang, Z Yu and R Zeng. Statistical Analysis on lightning performance of transmission lines in several regions of China [J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1543-1551.
[12] D K L Chia and A C Liew. Analysis of effect of resistive lightning protection terminal on lightning return stroke current[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 2307-2314.
[13] 易辉.同杆双回 500 kV 输电线路防雷特性分析及改进措施[J].高电压技术,1998(02):52-55.
YI Hui. The analysis of lightning protection performance and the improvement measure for the shared tower double-circuit 500 kV transmission liens [J]. High Voltage Engineering, 1998(02):52-55.
[14] 盛骤,谢式千,潘承毅. 概率论与数理统计[M].高等教育出版社,2008: 106-108.
SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability theory and mathematical statistics [M]. Higher Education Press, 2008: 106-108.

备注/Memo

备注/Memo:
收稿日期:2019-11-27 作者简介:马建国(1965—),男,教授级高级工程师,长期从事输电线路与防技术研究。
更新日期/Last Update: 2020-07-07