[1]段雁超,杜鸣心,熊 秀.风电机组玻纤叶片雷电接闪器布局仿真分析[J].电瓷避雷器,2020,(03):162-166,174.[doi:10.16188/j.isa.1003-8337.2020.03.026]
 DUAN Yanchao,DU Mingxin,XIONG Xiu.Layout Simulation of Lightning Receptors for Glass Fiber Blade of Wind Turbine[J].,2020,(03):162-166,174.[doi:10.16188/j.isa.1003-8337.2020.03.026]
点击复制

风电机组玻纤叶片雷电接闪器布局仿真分析()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
162-166,174
栏目:
避雷器
出版日期:
2020-06-25

文章信息/Info

Title:
Layout Simulation of Lightning Receptors for Glass Fiber Blade of Wind Turbine
作者:
段雁超 杜鸣心 熊 秀
(西安爱邦电磁雷电与电磁环境实验室,西安 710077)
Author(s):
DUAN Yanchao DU Mingxin XIONG Xiu
(Lighting and Electromagnetic Environmental Laboratory of Xi'an Airborne Electromagnetic Technology Co., Ltd., Xi'an 710077, China)
关键词:
风电机组 雷电防护 接闪器布局 仿真分析 感应电场 空间电势
Keywords:
wind turbine lightning protection layout of lightning receptors simulation analysis induced electric field space electric potential
DOI:
10.16188/j.isa.1003-8337.2020.03.026
摘要:
风电机组叶片雷电防护需要考虑整机叶片动态变化对空间电势的影响。雷电环境模型化,用平板电极模拟整个风机在雷电环境下“势”的分布,棒电极模拟雷电下行先导到达叶片周围时叶片上行先导的选择。计算叶片长59 m和79 m的风电机组感应电场分布和空间的电势分布,对比分析0°上叶片尖端处的感应电场,评估两种长度叶片的雷电防护区域,同时设计了叶片(长59 m)的接闪器布局。研究结果表明: 1)雷电环境下,越靠近叶尖感应电场越大; 2)叶片越长,雷电防护设计时应考虑更小角度试验验证。59 m叶片虑到21°,79 m叶片需要考虑到17°; 3)叶片越长,叶尖端需要防护的区域越大。59 m叶片距叶尖13.4 m区域需要重点防护,占整个叶片的22.7%; 79m叶片是距叶尖32.9 m区域需要重点防护,占整个叶片的41.6%。4)59 m叶片防雷系统设计时,叶尖接闪器和第一组叶身接闪器间距为2.7m,第一组叶身接闪器和第二组叶身接闪器的间距为7.5 m,第二组叶身接闪器和第三组叶身接闪器的间距为14 m,第三组接闪器可以选择安装。数值分析结果为风机叶片的接闪器布局提供重要的数据和理论支撑。
Abstract:
The lightning protection of wind turbines should consider the influence of the dynamic change of blades on space electric potential. The lightning environment is modeled. The distribution of the “potential” of the whole wind turbines under the lightning environment is simulated with the plate electrode. The rod electrode simulates the choice of the upstream leader of the blade when the lightning downlink leader reaches the edge of the blade. The inductive electric field distribution and space electric potential distribution of wind turbine with blade length of 59m and 79m are calculated. And the inductive electric field at the tip is compared and analyzed when the blade angle is 0°. The lightning protection area of the blades of the two lengths is evaluated. At the same time, the lightning receptors layout of the blade(59 m long)is designed. The results show that: 1)in the lightning environment, the closer to the tip of the blade, the larger the inductive electric field. 2)The longer the blade is, the smaller the angle should be taken into account in the lightning protection design. 59 m blade needs to consider to 21°, 79 m blade needs to consider to 17°. 3)The longer the blade is, the larger the area requiring protection from the tip of the blade. The 13.4 m area of the tip needs the key protection for the 59m blade, the ratio is 22.7%. The 32.9m area of the tip needs the key protection for the 79 m blade, the ratio is 41.6%.(4)In the design of the lightning protection system for the 59m blade, the distance between the receptor in the blade tip and the first group receptors in the blade body is 2.7 m. The distance between the first group receptors and the second group receptors in the blade body is 7.5 m. The distance between the second group receptors and the third group receptors in the blade body is 14 m. And the third group receptors in the blade body is optional. Numerical analysis results provide important data support and theoretical basis for the lightning protection design of wind turbine blade.

参考文献/References:

[1] Shigeru Yokoyama.Lighting protection of wind turbine blades [J]. Electric Power System Research, 2013(94): 3-9.
[2] 赵海翔,王晓蓉.风电机组的雷击机理与防雷技术[J].电网技术,2003, 27(7):12-15, 39.
ZHAO Haixiang, WANG Xiaorong. Lightning stroke mechanism of wind turbine generators and its lightning protection measures[J]. Power System Technology, 2003, 27(7): 12-15, 39.
[3] Yuta Ito, Kiyoshi Sakamoto, Mamoru Kimura, et al. A verification of lightning protection design for Hitachi wind turbine system[C].Nagoya, International Conference on Lightning & Static Electricity, 2017.
[4] 上海市气象局.建筑物防雷装置检测技术规范: GB/T 21431-2008 [S]. 北京: 中国标准出版社, 2008.
Shanghai Meteorological service. Technical specifications for inspection of lightning protection system in building: GB/T 21431-2008 [S]. Beijing: Standards Press of China, 2008.
[5] 熊军, 陈俊武, 陈智, 等. 杆塔地网接地电阻冲击特性的研究[J]. 电瓷避雷器, 2006(06): 42-44.
XIONG Jun, CHEN Junwu, CHEN Zhi, et al. Research on the impulsive characteristics of grounding resistance of transmission- line towers[J].Insulators and Surge Arresters, 2006(06): 42-44.
[6] 杨利彬.考虑冲击电晕的输电线路耐雷性能研究[D].重庆:重庆大学,2009.
[7] 梅卫群,江燕如.建筑防雷工程与设计[M].北京:气象出版社,2004.
[8] SHIGERU Yokoyama, Lighting protection of wind turbineblades[J]. Electric Power System Research, 2013(94): 3-9.
[9] WANG Jianguo, WANG Yu,ZHOU Mi, et al. Polarity Influence on Lightning Attachment Behavior for Wind Turbine Generator[C]. Nagoya, International Conference on Lightning & Static Electricity, 2017.
[10] RADICˇEVIC' B M, Savic M S. Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1181-1190.
[11] 文习山,屈路,王羽,姒天军,徐剑伟,蓝磊.叶片转动对风机引雷能力影响的模拟试验研究[J].中国电机工程学报,2017, 37(7): 2151- 2159.
WEN Xishan, QU Lu, WANG Yu, SI Tianjun, XU Jianwei, LAN Lei. Experimental study of the influence of the blade rotation on triggered lightning ability of wind turbine's blades[J]. Proceedings of the CSEE, 2017, 37(7): 2151- 2159.
[12] 屈路,文习山,王羽,姒天军,马宇晗,蓝磊.接闪器对旋转风机引雷能力影响的试验研究[J].高电压技术,2017, 43(5): 1628- 1634.
QU Lu, WEN Xishan, WANG Yu, SI Tianjun, MA Yuhan, LAN Lei. Experimental study on the influence of the air terminal on triggered LightningAbility of rotation wind turbine[J]. High Voltage Engineering, 2017, 43(5):1628- 1634.
[13] PEESAPATI V, COTTON I. Lightning protection of wind turbines &x2014; A comparison of real lightning strike data and finite element lightning attachment analysis[C]2009 International Conference on Sustainable Power Generation and Supply.[S.l.]:[s.n.], 2009: 1-8.
[14] 曾嵘, 周旋, 王泽众, 等.国际防雷研究进展及前沿述评[J]. 高电压技术, 2015, 41(01): 1-13.
ZENG Rong, ZHOU Xuan, WANG Zezhong, et al. Review of Research advances and fronts on international lightning and protection[J]. High Voltage Engineering, 2015, 41(01): 1-13.
[15] 任瀚文,郭子炘,马宇飞,李庆民,SIEW W H.雷击风机叶片的跃变击距特性与定量表征[J].电工技术学报,2017, 32(15): 216- 224.
REN Hanwen, GUO Zixin, MA Yufei, LI Qingmin, SIEW W H. Quantitative characterization of the striking saltus distance of wind turbine blade[J]. Transactions of China Electrotechnical Society, 2017, 32(15):216- 224.
[16] 王巨丰,周世濂,田树军,赵权.地面上接地金属体高度对雷击选择性的影响[J].高电压技术,2005(4):64-65.
WANG Jufeng, ZHOU Shilian, TIAN Shujun, ZHAO Quan. Influence of height of grounding conductors above ground on lightning strike selectivity[J]. High Voltage Engineering, 2005(4): 64-65.
[17] 戴玲,刘俭,林福昌,李化.考虑先导发展随机性的输电线路雷击仿真模型[J].高电压技术,2007(7):36-39.
DAI Ling, LIUJian, LIN Fuchang, LI Hua. Simulation model of lightning stroke to a transmission line consideringthe leader propagation randomness[J]. High Voltage Engineering, 2007(7): 36-39.
[18] DUAN Yanchao, XIONG Xiu, HU Pingdao. Research on aircraft radome lightning protection based on segmented diverter strips[C].2017 International Symposium On Electromagnetic Compatibility - Emc Europe.[S.l.]:[s.n.], 2017

备注/Memo

备注/Memo:
收稿日期:2018-09-25 作者简介:段雁超(1988—),男,工程师,主要从事雷电及复杂电磁环境数值仿真工作。
更新日期/Last Update: 2020-07-07