[1]陈 伟,李少东,景茂恒,等.直流接地极附近架空光缆拉线的接触电势研究[J].电瓷避雷器,2020,(03):153-161.[doi:10.16188/j.isa.1003-8337.2020.03.025]
 CHEN Wei,LI Shaodong,JING Maoheng,et al.Study on the Touch Potential of Stay Wires of an Overhead Optical Cable Near DC Grounding Electrode[J].,2020,(03):153-161.[doi:10.16188/j.isa.1003-8337.2020.03.025]
点击复制

直流接地极附近架空光缆拉线的接触电势研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
153-161
栏目:
避雷器
出版日期:
2020-06-25

文章信息/Info

Title:
Study on the Touch Potential of Stay Wires of an Overhead Optical Cable Near DC Grounding Electrode
作者:
陈 伟1 李少东2 景茂恒2 孙 勇1 鲁海亮2 文习山2 曾星宏3
(1.中国南方电网超高压输电公司检修试验中心, 广州 510663; 2.武汉大学电气与自动化学院, 武汉 430072; 3.中国南方电网超高压输电公司南宁局, 南宁 530000)
Author(s):
CHEN Wei1 LI Shaodong 2 JING Maoheng2 SUN Yong1 LU Hailianng2 WEN Xisan2 ZENG Xinghong3
(1.EHV Power Transmission Company Maintenance & Test Center, China Southern Power Grid, Guangzhou 510663, China; 2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China; 3.EHV Power Transmission Company Maintenance Nanning Bureau, Nanning 330000, China)
关键词:
单极大地运行 长距离多点接地系统 接触电势 边界元
Keywords:
monopolar operation with ground return long distance multi-point grounding system touch potential boundary element
DOI:
10.16188/j.isa.1003-8337.2020.03.025
摘要:
直流系统单极大地运行时通过接地极注入大地的电流会造成系列负面影响,某直流工程系统调试期间测得临近接地极的一架空光缆线路拉线接触电势高达440 V,安全风险极高。首先分析了架空光缆系统的结构特点,发现架空光缆的吊线与接地拉线构成了一个长距离多点接地系统。对典型架空光缆系统拉线的接触电势进行了理论计算,发现拉线接触电势取决于吊线接地点间的电位差和拉线接地电阻。采用基于边界元法的仿真软件CDEGS研究了土壤、线路走廊、以及拉线参数等对接触电势的影响,最后提出了通过绝缘子将吊线电气断开来保证每段吊线单点接地的解决方法。
Abstract:
The DC current flowing through a grounding electrode into the earth during monopolar operation of HVDC systems with ground return may cause a serious of negative effects. The touch potential of a stay wire of an overhead optical cable near the grounding electrode is as high as 440 V during the commissioning of a DC engineering system, which is a high risk to safety. In this paper, the structure characteristics of the overhead optical cable system and the reasons for the high touch potential of the stay wire drawing are analyzed. It's found that the overhead cable system and stay wire constitute a long distance multi-point grounding system. In this paper, the contact potential of a typical overhead optical cable system is theoretically calculated, and it is found that the contact potential of the drawing line depends on the potential difference and the wire grounding resistance. A simulation model based on the boundary element method is used to establish the simulation model of the grounding electrode optical cable system, and the influence of the soil model, the parameters of the line corridor and the joint location on the contact potential of the stay wire is studied. At the end of the article, it's proposed that as long as there is only one grounding point at each section of wire, the risk of touch potential can be removed.

参考文献/References:

[1] 赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
[2]李鹏,谷琛,陈东,何慧雯,黄瑞平,谢莉,陈秀娟,丁玉剑,谢龙.±1 500 kV特高压直流输电技术前期研究[J].高电压技术,2017,43(10):3139-3148.
LI Peng, GU Chen, CHEN Dong, HE Huiwen, HUANG Ruiping, XIE Li, CHEN Xiujuan, DING Yujian, XIE Long. Development of technologies in±1 500 kV UHV DC transmission research[J]. High Voltage Engineering, 2017, 43(10): 3139-3148.
[3]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向[J].高电压技术,2010, 36(12):3070-3077.
XU Zheng, TU Qingrui, QIU Peng. New trends in HVDC technology viewed through CIGRE 2010[J]. High Voltage Engineering, 2010, 36(12): 3070-3077.
[4]HAMMONS T J, WOODFORD D, LOUGHTAN J, CHAMIA M, DONAHOE J, POVH D, BISEWSKI B, LONG W. Role of HVDC transmission in future energy development[J]. IEEE Power Engineering Review, 2000, 20(2): 10-25.
[5]L'ABBATE A, MIGLIAVACCA G, HÄGER U, REH-TANZ C, RÜBERG S, FERREIRA H, FULLI G, PURVINS A. The role of facts and HVDC in the future PAN-European transmission system development[C]9th IET International Conference on AC and DC Power Transmission(ACDC 2010).[S.l.]:[s.n.], 2010: 1-8.
[6]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012, 36(4):1-9.
LIANG Xuming, ZHANG Ping, CHANG Yong. Recent advances in high-voltage direct-current power transmission and its developing potential[J]. Power System Technology, 2012, 36(4): 1-9.
[7]王彪,王渝红,丁理杰,熊萍,李兴源.高压直流输电接地电极及相关问题综述[J].电力系统及其自动化学报,2012, 24(1):66-72.
WANG Biao, WANG Yuhong, DING Lijie, XIONG Ping, LI Xingyuan. Summary of HVDC grounding electrode and related issues[J]. Proceedings of the Chinese Society of Universities, 2012, 24(1): 66-72.
[8]解广润.电力系统接地技术[M].北京:水利电力出版社,1991.
[9]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007.
[10]何金良,尹晗,张晓,胡军.地中敷设绝缘层降低直流接地极跨步电压的方法研究[J].高电压技术,2014, 40(7):1940-1947.
HE Jinliang, YIN Han, ZHANG Xiao, HU Jun. Method of reducing DC grounding electrode stepvoltage based on underground insulating layers[J]. High Voltage Engineering, 2014, 40(7): 1940-1947.
[11]周锋,吴斌,文锦霞,张海春.基于PSCAD的UHVDC换流站共用接地极影响研究[J].电瓷避雷器,2012(2):105-110.
ZHOU Feng, WU Bin, WEN Jinxia, ZHANG Haichun. Research on effect of common grounding electrode in UHVDC stations converter based on PSCAD[J]. Insulators and Surge Arresters, 2012(2): 105-110.
[12]孟晓波,曹方圆,廖永力,李锐海,张波.抑制直流接地极影响的管道绝缘防护措施分析[J].高电压技术,2017, 43(12):3900-3906.
MENG Xiaobo, CAO Fangyuan, LIAO Yongli, LI Ruihai, ZHANG Bo. Analysis of insulation methods to reduce influences of DC grounding electrode on pipeline[J]. High Voltage Engineering, 2017, 43(12): 3900-3906.
[13]迟兴和,张玉军.直流接地极与大地中金属管道的防护距离[J].电网技术,2008, 32(2):71-74, 84.
CHI Xinghe, ZHANG Yujun. Protective distance between HVDC electrode and underground metal pipeline[J]. Power System Technology, 2008, 32(2): 71-74, 84.
[14]房媛媛,卢剑.直流接地极的地电流对埋地金属管道腐蚀影响分析[J].南方电网技术,2013, 7(6):71-75.
FANG Yuanyuan, LU Jian. Analysis on the influence of HVDC grounding electrode's ground current on the corrosion of buried metal pipelines[J]. Southern Power System Technology, 2013, 7(6): 71-75.
[15]商善泽.直流接地极入地电流对埋地金属管道腐蚀影响的研究[D].北京:华北电力大学,2016.
[16]刘士利,李承彬,拾杨,钱成,刘磊.直流接地极引起的电气化铁路牵引变压器直流电流计算[J].高电压技术,2017, 43(7):2161-2166.
LIU Shili, LI Chengbin, SHE Yang, QIAN Cheng, LIU Lei. Calculation of DC current caused by DC ground electrode in traction transformer of electrified railway[J]. High Voltage Engineering, 2017, 43(7): 2161-2166.
[17]郭剑.直流接地极对电气化铁路的电磁影响[J].高电压技术,2013, 39(1):241-250.
GUO Jian. Electromagnetic influences of ground electrode on electrified railway[J]. High Voltage Engineering, 2013, 39(1): 241-250.
[18]邹国平,姚晖,何文林,孙翔,吴尊东,汪卫国.溪洛渡—浙西±800 kV特高压直流输电工程受端电网直流偏磁治理[J].高电压技术,2016, 42(2):543-550.
ZOU Guoping, YAO Hui, HE Wenlin, SUN Xiang, WU Zundong, WANG Weiguo. DC bias suppression of receiving-end power grid in±800 kV Xiluodu-Zhexi UHVDC project[J]. High Voltage Engineering, 2016, 42(2): 543-550.
[19]杨娜,陈煜,潘卓洪,文习山.准东—皖南±1 100 kV特高压直流输电工程受端电网的直流偏磁影响预测及治理[J].电网技术,2018, 42(2):380-386.
YANG Na, CHEN Yu, PAN Zhuohong, WEN Xishan. Influence prediction and suppression research of DC bias in eastern Junggar-Southern Anhui ±1 100 kV UHVDC Receiving-End grid[J]. Power System Technology, 2018, 42(2): 380-386.
[20]YANG Na, CHEN Yu, PAN Zhuohong, et al. Influence prediction and suppression research of DC bias in eastern Junggar-Southern Anhui±1 100 kV UHVDC Receiving-End grid[J]. Power System Technology, 2018, 42(02): 380-386.
[21]WEI Li, PAN Zhuohong, LU Hailiang, CHEN Xiaoyue, LU Zhang, WEN Xishan. Influence of deep earth resistivity on HVDC Ground-Return currents distribution[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 1844-1851.
[22]ZHANG B, ZENG R, HE J, ZHAO J, LI X, WANG Q, CUI X. Numerical analysis of potential distribution between ground electrodes of HVDC system considering the effect of deep earth layers[J]. IET Generation Transmission & Distribution, 2008, 2(2): 185.
[23]RONG Zeng, YUZhanqing, HE Jinliang, BO Zhang, BEN Niu. Study on restraining DC neutral current of transformer during HVDC monopolar operation[J]. Power Delivery, IEEE Transactions on, 2011, 26(4): 2785-2791.
[24]PAN Zhuohong, WANG Xiaomao, TAN Bo, ZHU Lin, LIU Yong, LIU Yilu, WEN Xishan. Potential compensation method for restraining the DC bias of transformers during HVDC monopolar operation[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 103-111.
[25]张东,陶凤源,董新胜,廖志华,贾莹坤,许衡.哈密地区变压器直流偏磁仿真分析及抑制措施研究[J].电瓷避雷器,2015(1):87-92.
ZHANG Dong, TAO Fengyuan, DONG Xinsheng, LIAO Zhihua, JIA Yingkun, XU Heng. Analysis and simulation of transformer DC bias and measures of suppression in Hami region[J]. Insulators and Surge Arresters,2015(1): 87-92.
[26]徐碧川,鲁海亮,潘卓洪,文习山,蓝磊,李伟.直流接地极极址勘测的研究[J].电力自动化设备,2016, 36(1):149-154.
XU Bichuan, LU Hailiang, PAN Zhuohong, WEN Xishan, LAN Lei, LI Wei. Research of DC ground electrode site survey[J]. Electric Power Automation Equipment, 2016, 36(1): 149-154.
[27]FALEIRO E, PAZOS F J, ASENSIO G, DENCHE G, GARCIA D, MORENO J. Interaction between interconnected and isolated grounding systems: a case study of transferred potentials[J]. IEEE Transactions on Power Delivery, 2015, 30(5): 2260-2267.
[28]COLOMINAS I, NAVARRINA F, CASTELEIRO M. Numerical simulation of transferred potentials in earthing grids considering layered Soil models[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1514-1522.
[29]HU J, AHMED R. CIGRE TB 675-Working Group B4.61 - General Guideines for HVDC Electrode Design[M]. 2017
[30]通信线路工程设计规范:GB 51158/2015[S]. 北京:中国计划出版社, 2015
[31]通信局(站)防雷与接地极工程设计规范:GB 50698-2011[S]. 北京:中国计划出版社, 2012.

备注/Memo

备注/Memo:
收稿日期:2018-09-12 作者简介:陈伟(1984—),男,硕士,高级工程师,研究方向为防雷与接地技术。
更新日期/Last Update: 2020-07-07