[1]王 朴,张兆归,朱 昱,等.基于人工智能技术的电网雷击故障监测方法研究[J].电瓷避雷器,2020,(03):121-126.[doi:10.16188/j.isa.1003-8337.2020.03.020]
 WANG Pu,ZHANG Zhaogui,ZHU Yu,et al.Research on Lightning Fault Monitoring Method of Power Grid Based on AI Technology[J].,2020,(03):121-126.[doi:10.16188/j.isa.1003-8337.2020.03.020]
点击复制

基于人工智能技术的电网雷击故障监测方法研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
121-126
栏目:
避雷器
出版日期:
2020-06-25

文章信息/Info

Title:
Research on Lightning Fault Monitoring Method of Power Grid Based on AI Technology
作者:
王 朴1 张兆归1 朱 昱2 王 敏2
(1.国网北京市电力公司昌平供电公司, 北京 102200; 2.威胜电气有限公司, 湖南 岳阳 414600)
Author(s):
WANG Pu1 ZHANG Zhaogui1 ZHU Yu2 WANG Min2
(1.Changping Power Supply Company,State Grid Beijing Electric Power Company, Beijing 102200, China; 2.Weisheng Electric Co., Ltd., Yueyang 414600, China)
关键词:
AI 智能终端 智能电网 雷击故障 自动平衡 动态防雷 监测系统
Keywords:
AI intelligent terminal smart grid lightning fault automatic balance dynamic lightning protection monitoring system
DOI:
10.16188/j.isa.1003-8337.2020.03.020
摘要:
针对智能电网的雷击故障问题,提出了一种基于AI和智能终端的智能电网雷击故障监测方法。通过对人工智能技术在防雷监测中的应用进行研究,结合台区智能监测终端,建立配电网自动平衡动态防雷监测系统,对配电网雷击故障进行预测,并通过实验验证了该方法的有效性。实验结果表明,该智能电网雷击故障监测方法可以准确预测电网雷击故障,为制定全面防雷解决方案提供了参考,从而有助于配电网实现雷击后自愈,并提高了电网运行的稳定性。
Abstract:
Aiming at the lightning fault of smart grid, the author proposed a lightning fault monitoring method based on AI and intelligent terminal. Through the research of the application of artificial intelligence technology in lightning protection monitoring, combined with the intelligent monitoring terminal in the substation area, the automatic balance dynamic lightning protection monitoring system of the distribution network was established to predict the lightning failure of the distribution network, and the effectiveness of the method was verified by experiments. The experiment results showed that the intelligent grid lightning fault monitoring method could accurately predict the grid lightning fault, which provided a reference for the development of comprehensive lightning protection solutions, so as to help the distribution network to achieve self-healing after lightning stroke and to improve the operation stability of power grid.

参考文献/References:

[1] 阿辽沙·叶,顾君,张小秋.基于数据时空相关性的智能台区识别技术[J]. 现代电子技术, 2018, 41(4):30-33.
A Liaosha-she. GU Jun, ZHANG Xiaoqiu. Intelligent transformer room recognition technology based on temporal and spatial data correlation[J]. Modern Electronics Technology, 2018, 41(4): 30-33.
[2]李亚,樊汝森,蒋伟,等. 基于BP神经网络的智能台区识别方法研究[J]. 电测与仪表,2017, 54(3):25-30.
LI Ya, FAN Rusen, JIANG Wei, et al. Research on the intelligent transformer area recognition method based on BP neural network[J]. Electrical Measurement & Instrumentation, 2017, 54(3): 25-30.
[3]汤毅,程乐峰,李正佳,等. 基于智能台区的配电网经济运行及优化高级分析系统设计[J]. 电力系统保护与控制,2016, 44(15):150-158.
SHANG Yi, CHENG Lefeng, LI Zhengjia, et al. Design of economic operation and optimization analysis system based on intelligent area power network[J]. Power System Protection and Control, 2016, 44(15): 150-158.
[4]朱晔,姜志博,田浩,等. 电网雷电大数据采集系统研发[J]. 高压电器,2019, 55(4):160-168.
ZHU Ye, JIANG Zhibo, TIAN Hao, et al. Research and development of lightning big data acquisition system in power grid[J]. High Voltage Apparatus, 2019, 55(4): 160-168.
[5]孙秋芹,张永涛,汪沨,等. 江苏500 kV电网限流电抗器雷电侵入波过电压特性[J]. 电力系统及其自动化学报,2018, 30(12):87-92.
SUN Qiuqin, ZHANG Yongtao, WANG Feng, et al. Characteristics of lightning intruding overvoltage for current-limiting inductor in Jiangsu 500 kV power grid[J]. Proceedings of the CSU-EPSA, 2018, 30(12): 87-92.
[6]彭向阳,金亮,王锐,等. 220 kV同塔线路雷击同跳故障分析及防治措施[J]. 电瓷避雷器,2018(4):65-71.
PENG Xiangyang, JIN Liang, WANG Rui, et al. Simultaneous lightning trip-out failure analysis and prevention measures of 220 kV multi-circuit power transmission line on the same tower[J]. Insulators and Surge Arresters, 2018(4): 65-71.
[7]叶海峰,谈发力,周恩泽,等. 一种基于耦合电容的电网过电压在线监测技术研究[J]. 电瓷避雷器,2018(1):88-93.
YE Haifeng, TAN Fali, ZHOU Enze, et al. Research on online monitoring technology of power grid overvoltage based on coupling capacitor[J]. Insulators and Surge Arresters, 2018(1): 88-93.
[8]TOMAS Baleentis, DALIA treimikien(·overe). Sustainability in the electricity sector through advanced technologies: energy mix transition and smart grid technology in China[J]. Energies, 2019, 12(6): 1142.
[9]BERND MBuchholz, ZBIGNIEW Styczynski. Vision and strategy for the electricity networks of the future[M]. Boston: Smart Grids-Fundamentals and Technologies in Electricity Networks, 2014.
[10] BARBOSA Celio Fonseca, NALLIN Flávio Eduardo. Lightning protection of a smart grid sensor[J]. Electric Power Systems Research, 2015, 118(8): 83-88.
[11]高国磊,李英娜,段效琛,等. 基于ACO优化LS-SVM的变压器故障诊断[J]. 电子科技,2018, 31(6):59-62.
GAO Guolei, LI Yingna, DUAN Xiaochen, et al. A fault diagnosis method for transformer based on least squares support vector machine optimized by ant colony optimization[J]. Electronic Science and Technology, 2018, 31(6): 59-62.
[12]LONG Qiufeng, LV Qiansu, WEN Xiankui, et al. Status detection evaluation method of distribution network fault indicator based on artificial intelligence[J]. IOP Conference Series: Materials Science and Engineering, 2019, 486(1): 012098.
[13]NASER El Naily, SAAD M, HUSSEIN T, MOHAMED Faisal A.minimizing the impact of distributed generation of a weak distribution network with an artificial intelligence technique[J]. Applied Solar Energy, 2017, 53(2): 109-122.
[14]肖开伟,许晓平,赵振刚,等. 基于电力扰动信号的主动式单相接地故障定位技术[J]. 电子科技,2018, 31(6):36-38, 47.
XIAO Kaiwei, XU Xiaoping, ZHAO Zhengang, et al. Active single based on power disturbance signal experimental study on fault location technology of phase[J]. Electronic Science and Technology, 2018, 31(6): 36-38, 47.
[15]徐建凯,蔡金明,张华. 10 kV配变支柱型复合氧化锌避雷器的改进与应用[J]. 浙江电力,2014, 33(5):65-68.
XU Jiankai, CAI Jinming, ZHANG Hua. Improvement and application of composite Zinc oxide pillar arrester of 10 kV distribution transformer[J]. Zhejiang Electric Power, 2014, 33(5): 65-68.

备注/Memo

备注/Memo:
收稿日期:2018-10-21 作者简介:王朴(1983—)男,硕士,高级工程师。研究方向:电网设备运维与检修管理,配电设备可靠运行研究及应用。
更新日期/Last Update: 2020-07-07