[1]窦 陈,李 珂,刘 涌,等.电网运行中主动避雷系统的研究与应用[J].电瓷避雷器,2020,(03):104-109.[doi:10.16188/j.isa.1003-8337.2020.03.017]
 DOU Chen,LI Ke,LIU Yong,et al.Research and Application of Active Lightning Protection System in Power Grid Operation[J].,2020,(03):104-109.[doi:10.16188/j.isa.1003-8337.2020.03.017]
点击复制

电网运行中主动避雷系统的研究与应用()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
104-109
栏目:
避雷器
出版日期:
2020-06-25

文章信息/Info

Title:
Research and Application of Active Lightning Protection System in Power Grid Operation
作者:
窦 陈1 李 珂1 刘 涌2 袁秋实2
(1.贵州电网有限责任公司 凯里供电局, 贵州 凯里 556000; 2.上海博英信息科技有限公司, 上海 200240)
Author(s):
DOU Chen1 LI Ke1 LIU Yong2 YUAN Qiushi2
(1.Kaili Power Supply Bureau, Guizhou Power Grid Company Limited, Kaili 556000, China; 2.Shanghai Proinvent Information Technology Co., Ltd., Shanghai 200240, China)
关键词:
主动避雷系统 微波诱导技术 大气电场检测 微波生成电路
Keywords:
active lightning protection system microwave induced technology atmospheric electric field detection microwave generation circuit
DOI:
10.16188/j.isa.1003-8337.2020.03.017
摘要:
针对被动式避雷技术存在保护半径小、效率低和延迟大等缺点,文中基于微波诱导的技术提出了一种适用于山区10 kV配电网的主动避雷系统,该系统速度更快、保护半径更大。使用理论分析的方法阐述了系统的可行性,在此基础上设计了主动避雷系统的软硬件系统。其中,硬件电路包括大气电场检测、微波生成电路、微波诱导发射电路等。对该主动避雷系统进行了仿真测试,所得到的结果理想,验证了系统的可行性和稳定性。
Abstract:
Aiming at the shortcomings of passive lightning protection technology, such as small protection radius, low efficiency and large delay, an active lightning protection system with faster speed and larger protection radius suitable for 10 kV distribution network in mountainous area is proposed based on microwave-induced technology. In order to realize the system, this paper expounds the feasibility of the system by means of theoretical analysis. On this basis, this paper designs the hardware circuit and the corresponding software system of the active lightning arrest system, including the atmospheric electric field detection, microwave generation circuit, microwave induced emission circuit and so on. At the same time, the concrete simulation to the active lightning arrest system has been carried out, and obtained the quite ideal results, which has verified the feasibility and stability of the system.

参考文献/References:

[1] 刘祥龙,王长瑞. 针对微波诱导主动式防雷系统中诱导天线的特性分析[J]. 无线互联科技,2015(19):43-44.
LIU Xianglong, WANG Changrui. Analysis on the characteristics of induced antenna in microwave induced active lightning protection system[J]. Wuxian Hulian keji, 2015(19): 43-44.
[2]李景禄,吴维宁,杨廷方,等. 配电网防雷保护的分析与研究[J]. 高电压技术,2004, 30(4):58-59.
LI Jinglu, WU Weining, YANG Tingfang, et al. Analysis of lightning protection of distribution networks[J]. High Voltage Engineering, 2004, 30(4): 58-59.
[3]杭争翔,宋政. 交流脉冲MIG电弧稳定性及其控制[J]. 沈阳工业大学学报,2002, 24(5):374-377.
HANG Zhengxiang, SONG Zheng. AC PMIG arc stability and its ontrol[J]. Journal of Shenyang University of Technology, 2002, 24(5): 374-377.
[4]钟颖仪,蔡晓明,陈祖彬. 电力系统通信中防雷技术应用[J]. 电子科技,2012, 25(12):83-85.
ZHONG Yingyi, CAI Xiaoming, CHEN Zubin. Application of the lightning protection technology of power system telecommunications[J]. Electronic Science and Technology, 2012, 25(12): 83-85.
[5]陈仁朕. 基于STM32F10x的光伏汇流箱设计[J]. 电子设计工程,2015, 23(7):111-113, 117.
CHEN Renzhen. Photovoltaic junction box design based on the architecture of the STM32F10x[J]. Electronic Design Engineering, 2015, 23(7): 111-113, 117.
[6]张继光. 自动气象站的防雷与接地技术[J]. 电子科技,2011, 24(6):105-107.
ZHANG Jiguang. Lightening protection and grounding technology for weather stations[J]. Electronic Science and Technology, 2011, 24(6): 105-107.
[7]唐忠达. 避雷器在电力系统应用中的问题及应对措施[J]. 山东工业技术,2018(1):155, 154.
TANG Zhongda. Problems and countermeasures in the application of lightning arresters in power systems[J]. Shandong Industrial Technology, 2018(1): 155, 154.
[8]隋东硼. 计及冲击电晕的500 kV变电站雷电过电压计算及防雷措施研究[D]. 沈阳:沈阳工业大学,2013.
[9]曾春光,罗军. 关于接触网防雷技术分析与对策[J]. 电网与清洁能源,2015, 31(6):80-82, 87.
ZENG Chunguang, LUO Jun. Analysis on catenary Anti-Lightning technology and corresponding countermeasures[J]. Advances of Power System & Hydroelectric Engineering, 2015, 31(6): 80-82, 87.
[10]白庆. 浅析6 kV~35 kV电网防雷保护现状和改进措施[J]. 电瓷避雷器,2012(5):90-93.
BAI Qing. Analysis on current situation and improvement measures of 6 kV~35 kV power grid lightning protection[J]. Insulators and Surge Arresters, 2012(5): 90-93.
[11]李海明. 基于电磁场理论的电感型避雷针防雷机理研究[D]. 广州:华南理工大学,2015.
[12]张铁竹,张桂香. 考虑线路走廊环境的35 kV配电网避雷器优化配置研究[J]. 电瓷避雷器,2016(5):74-78.
ZHANG Tiezhu, ZHANG Guixiang. Optimal configurations of surge arresters of 35 kV distribution lines with different line corridors environment[J]. Insulators and Surge Arresters, 2016(5): 74-78.
[13]陈家宏,赵淳,谷山强,等. 我国电网雷电监测与防护技术现状及发展趋势[J]. 高电压技术,2016, 42(11):3361-3375.
CHEN Jiahong, ZHAO Chun, GU Shanqiang, et al. Present status and development trend of lightning detection and protection technology of power grid in China[J]. High Voltage Engineering, 2016, 42(11): 3361-3375.
[14]何俊佳,蔡汉生,贺恒鑫,等. 南方电网超/特高压输电线路防雷性能评估技术研究进展[J]. 南方电网技术,2016, 10(9):1-10, 29.
HE Junjia, CAI Hansheng, HE Hengxin, et al. Review on lightning performance estimation of EHV and UHV overhead transmission lines in China southern power grid[J]. Southern Power System Technology, 2016, 10(9): 1-10, 29.
[15]刘刚,马浩禹,张弦. 改进层次分析法在配网线路防雷评估中的应用[J]. 华南理工大学学报:自然科学版,2016, 44(4):71-76, 100.
LIU Gang, MA Haoyu, ZHANG Xian. Application of improved analytic hierarchy process on evaluation of lightning protection in distribution networks[J]. Journal of South China University of Technology(Natural Science Edition), 2016, 44(4): 71-76, 100.

备注/Memo

备注/Memo:
收稿日期:2018-10-31 作者简介:窦陈(1987—),男,硕士,工程师。研究方向:配电网、供电可靠性、电压质量。
更新日期/Last Update: 2020-07-07