[1]李景丽,栗超超,冯 鹏.复杂土壤结构对流入变压器直流电流的影响分析[J].电瓷避雷器,2020,(03):34-42.[doi:10.16188/j.isa.1003-8337.2020.03.006]
 LI Jingli,LI Chaochao,FENG Peng.Analysis of the Influence of Complex Soil Structure on DC Current Flowing into Transformer[J].,2020,(03):34-42.[doi:10.16188/j.isa.1003-8337.2020.03.006]
点击复制

复杂土壤结构对流入变压器直流电流的影响分析()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
34-42
栏目:
避雷器
出版日期:
2020-06-25

文章信息/Info

Title:
Analysis of the Influence of Complex Soil Structure on DC Current Flowing into Transformer
作者:
李景丽1 栗超超12 冯 鹏12
(1.郑州大学电气工程学院 郑州 450001; 2.郑州大学产业技术研究院 郑州 450001)
Author(s):
LI Jingli1 LI Chaochao12FENG Peng12
(1.School of Electrical Engineering,Zhengzhou University, Zhengzhou, 450001,China; 2.Institute of Industrial Technology, Zhengzhou University, Zhengzhou 450001, China)
关键词:
直流输电 交流变电站 复杂土壤 直流偏磁
Keywords:
DC transmission AC substation complex soil DC bias
DOI:
10.16188/j.isa.1003-8337.2020.03.006
摘要:
直流输电系统以单极大地方式运行时,地中流散的直流电流流入极址附近交流变压器中性点,导致变压器产生直流偏磁现象。研究土壤结构对流入变压器的直流电流的影响是分析变压器直流偏磁现象的基础。建立考虑山川、海洋、湖泊等复杂土壤结构的直流接地极特性电磁场有限元模型,计算直流接地极散流产生的地中电位; 结合变电站电路模型计算流入相应变压器的直流电流; 在此模型基础上分析极址附近交流变电站接地网位置对流入变压器直流电流的影响。结果表明:当两交流变电站之间连线与山川、海洋平行时,流入变压器的直流电流量最小; 两变电站位于山川远离接地极的一侧时,由于高电阻率山川的电流阻碍作用,流入变压器的直流电流较均匀土壤情况有明显降低; 两变电站位于湖泊两侧时,由于湖水的良导电作用,两侧变电站电位差及流入变压器的直流电流较均匀土壤情况下明显降低。
Abstract:
When the HVDC transmission system operates in a single maximal mode, the DC current flowing in the ground flows into the neutral point of the AC transformer near the pole site, causing the transformer to generate DC bias. Studying the influence of soil structure on the DC current flowing into the transformer is the basis for analyzing the DC bias phenomenon of the transformer. In this paper, the electromagnetic field finite element model of DC grounding characteristics is established considering complex soil structures such as mountains, oceans and lakes, and the ground potential generated by DC grounding strip current is calculated. The DC current flowing into the corresponding transformer is calculated by the substation circuit model. The influence of the position of the grounding grid of the AC substation near the pole site on the DC current flowing into the transformer is analyzed. The results show that when the connection between the two AC substations is parallel to the mountains and the ocean, the amount of DC current flowing into the transformer is the smallest; when the two substations are located on the side of the mountain away from the grounding pole, the current flows into the transformer due to the high-resistance mountain current blocking effect. The DC current is significantly lower than that of the uniform soil. When the two substations are located on both sides of the lake, the potential difference between the two substations and the DC current flowing into the transformer are significantly lower than that of the uniform soil due to the good conductivity of the lake.

参考文献/References:

[1] 梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012, 36(4):1-9.
LIANG Xuming, ZHANG Ping, CHANG Yong. Recent advances in high-voltage direct-current power transmission and its developing potential[J]. Power System Technology, 2012, 36(4): 1-9.
[2]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007.
[3]何俊佳,叶会生,林福昌,李化.HVDC单极大地运行时土壤结构对地电位和地中电流分布的影响[J].南方电网技术,2007, 1(1):26-31.
HE Junjia, YE Huisheng, LIN Fuchang, LI Hua. Influence of soil structure on surface potential and ground currents distribution while HVDC mono-polar operation with ground return[J]. Southern Power System Technology, 2007, 1(1): 26-31.
[4]李长云,李庆民,李贞,姚金霞,刘民.半岛地质条件下计算高压直流输电地中直流分布的扩展镜像法[J].高电压技术,2011, 37(2):444-452.
LI Changyun, LI Qingmin, LI Zhen, YAO Jinxia, LIU Min. Extended image method to determine the underground DC current distribution of HVDC transmission systems under peninsula geological conditions[J]. High Voltage Engineering, 2011, 37(2): 444-452.
[5]唐新灵,姜建国,乔树通.基于有限元方法的地表电位分析[J].现代电力,2013, 30(3):65-68.
TANG Xinling, JIANG Jianguo, QIAO Shutong. Analysis of earth surface potential distribution based on finite element method[J]. Modern ElectricPower, 2013, 30(3): 65-68.
[6]郝治国,余洋,张保会,程临燕,曹瑞峰,丁茂生,张军.高压直流输电单极大地方式运行时地表电位分布规律[J].电力自动化设备,2009, 29(6):10-14.
HAO Zhiguo, YU Yang, ZHANG Baohui, CHENG Linyan, CAO Ruifeng, DING Maosheng, ZHANG Jun. Earth surface potential distribution of HVDC operation under monopole ground return mode[J]. Electric Power Automation Equipment, 2009, 29(6): 10-14.
[7]刘连光,马成廉.基于有限元方法的直流输电接地极多层土壤地电位分布计算[J].电力系统保护与控制,2015, 43(18):1-5.
LIU Lianguang, MA Chenglian. Calculation of multi-layer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection and Control, 2015, 43(18): 1-5.
[8]曹林,曾嵘,赵杰,何金良,张波.高压直流输电系统接地极电流对电力变压器运行影响的研究[J].高压电器,2006, 42(5):346-348, 354.
CAO Lin, ZENG Rong, ZHAO Jie, HE Jinliang, ZHANG Bo. Study on the influence of HVDC system grounding electrode current on power transformer operation[J]. High Voltage Apparatus, 2006, 42(5): 346-348, 354.
[9]杨永明,刘行谋,陈涛,杨帆,项丹.特高压直流输电接地极附近的土壤结构对变压器直流偏磁的影响[J].电网技术,2012, 36(7):26-32.
YANG Yongming, LIU Hangmou, CHEN Tao, YANG Fan, XIANG Dan. Impact of soil structure adjacent to ground electrodes of UHVDC power transmission lines on DC bias of power transformers[J]. Power System Technology, 2012, 36(7): 26-32.
[10]李景丽,郭丽莹,胡鹏,李渊博.基于薄壳理论的直流接地极电热动态耦合有限元模型[J].电网技术,2017, 41(9):3074-3082.
LI Jingli, GUO Liying, HU Peng, LI Yuanbo. Finite element DC grounding electrode model of dynamic electric-thermal coupling based on shell theory[J]. Power System Technology, 2017, 41(9): 3074-3082.
[11]于永军,杨琪,侯志远,习山,祁晓笑,王亮.天中直流工程入地电流对新疆哈密地区交流电网的影响[J].电网技术,2014, 38(8):2298-2303.
YU Yongjun, YANG Qi, HOU Zhiyuan, XI Shan, QI Xiaoxiao, WANG Liang. Influence of grounding current in UHVDC transmission project from tianshan to zhongzhou on Hami AC power system in Xinjiang uygur autonomous region[J]. Power System Technology, 2014, 38(8): 2298-2303.
[12]杨娜,陈煜,潘卓洪,文习山.准东—皖南±1 100 kV特高压直流输电工程受端电网的直流偏磁影响预测及治理[J].电网技术,2018, 42(2):380-386.
YANG Na, CHEN Yu,PAN Zhuohong, WEN Xishan. Influence prediction and suppression research of DC bias in eastern Junggar-Southern Anhui ±1 100 kV UHVDC Receiving-End grid[J]. Power System Technology, 2018, 42(2): 380-386.
[13]陈丹.锦屏—苏南特高压直流输电入地电流在四川电网内分布的预测分析[J].电力系统保护与控制,2012(14):94-98.
CHEN Dan. Forecast and analysis of Jinping-Sunan UHVDC earth-return current distribution in Sichuan power grid[J]. Power System Protection and Control, 2012(14): 94-98.
[14]谭波,潘卓洪,文习山.HVDC单极大地运行时直流电流在交流系统中分布的计算[C].2007中国电机工程学会高电压专委会学术年会,2007.
[15]曾嵘,张波,赵杰,蔡宗远,王琦,何金良,张铮.HVDC地中直流对交流系统的影响及规律分析[J].高电压技术,2009, 35(3):678-682.
ZENG Rong, ZHANG Bo, ZHAO Jie, CAI Zongyuan, WANG Qi, HE Jinliang, ZHANG Zheng. Influence and characteristics analysis of effect of the HVDC ground return current on AC system[J]. High Voltage Engineering, 2009, 35(3): 678-682.
[16]高压直流输电大地返回运行系统设计技术规定:DL/T5224-2005[S].

备注/Memo

备注/Memo:
收稿日期:2018-08-06 作者简介:李景丽(1983—),女,副教授,博士,研究领域:电磁场数值计算方法,电力系统过电压与接地技术及绝缘技术。 基金项目:国家自然科学基金(编号:51307152)。
更新日期/Last Update: 2020-07-07