[1]张小军,卢智成,刘振林.特高压支柱类设备动力放大系数研究[J].电瓷避雷器,2020,(02):204-210,215.[doi:10.16188/j.isa.1003-8337.2020.02.032]
 ZHANG Xiaojun,LU Zhicheng,LIU Zhenlin.Study on Dynamic Amplification Coefficient of UHV Pillar Type Equipment[J].,2020,(02):204-210,215.[doi:10.16188/j.isa.1003-8337.2020.02.032]
点击复制

特高压支柱类设备动力放大系数研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
204-210,215
栏目:
绝缘子
出版日期:
2020-04-25

文章信息/Info

Title:
Study on Dynamic Amplification Coefficient of UHV Pillar Type Equipment
作者:
张小军 卢智成 刘振林
(中国电力科学研究院有限公司, 北京 100192)
Author(s):
ZHANG Xiaojun LU Zhicheng LIU Zhenlin
(China Electric Power Research Institute, Beijing 100192, China)
关键词:
特高压 支柱类设备 支架频率 动力放大系数
Keywords:
UHV pillar type equipment support frequency dynamic amplification factor
DOI:
10.16188/j.isa.1003-8337.2020.02.032
摘要:
在特高压支柱类设备研究中,支架的动力放大系数是一个很关键的参数。重点研究了在地震加速度反应谱条件下,瓷质设备和复合材料设备在支架结构参数相同时的动力放大系数的变化关系。通过改变钢材的弹性模量使支架的刚度发生变化,用数值模拟的方法分别对11种整体结构中支架的速度、位移、应力、加速度的动力放大系数做了对比分析,同时通过计算不同支架结构形式的用钢量,来对比支架频率与用钢量之间的变化关系。从仿真分析的结果,并考虑实际特高压变电站和换流站内瓷质和复合材料电气设备抗震设计情况,建议统一采用1.40的支架动力放大系数,包络位移和应力放大系数,复合材料电气设备在力学性能上主要由强度控制,而位移响应无要求,因此支架动力放大系数应与应力相关,即应力为复合材料电气设备抗震设计的主要控制参数,从而为特高压支柱类设备支架的设计提供了理论依据。
Abstract:
In the research of the UHV pillar equipment, the power amplification factor of the bracket is an important parameter. In this paper, the dynamic amplification factor of the porcelain equipment and composite equipment with the same structure parameters is studied under the condition of earthquake acceleration response spectrum. By changing the elastic modulus of steel make the stiffness of the bracket changed. The velocity, the acceleration, the displacement and the stress of the bracket were compared and analyzed by numerical method. At the same time, the relationship between the support frequency and the steel dosage was compared by calculating the steel amount of the different bracket. Based on the results of simulation analysis, and considering the seismic design of porcelain and composite electrical equipment in UHV substation and converter station, it is suggested to adopt 1.4 support dynamic amplification factor; it envelopes the velocity, acceleration, displacement and stress amplification factors; and the mechanical properties of composite electrical equipment are mainly influenced by strength, which provide theoretical basis for the design of UHV pillar type equipment.

参考文献/References:

[1] 程永锋,邱宁,卢智成,等. 硬管母线连接的1 000 kV避雷器和电容电压式互感器抗震性能振动台试验[J]. 高电压技术,2014, 40(12):3882-3887.CHENG Yongfeng, QIU Ning, LU Zhicheng, et al. Shake table test on seismic performance of 1 000 kV arrester and capacitor voltage transformer interconnected by tube bus[J]. High Voltage Engineering, 2014, 40(12): 3882-3887.
[2]邱宁,程永锋,钟珉,等. 1 000 kV特高压交流电气设备抗震研究进展与展望[J]. 高电压技术,2015, 41(5):1732-1739.QIU Ning, CHENG Yongfeng, ZHONG Min, et al. Seismic research progress and prospect of 1 000 kV UHV AC electrical equipment[J]. High Voltage Engineering, 2015, 41(5): 1732-1739.
[3]文波,牛荻涛,赵鹏. 变电站抗震性能研究综述[J]. 工程抗震与加固改造,2007, 29(6):73-77.WEN Bo, NIUDitao, ZHAO Peng. Review of substation seismic performance research[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(6): 73-772.
[4]IEEE S, td 693-2005. Recommended practice for seismic design of substations[S], 2005.
[5] 日本电气技术标准调查委员会.电气设备抗震设计指南:JEAG 5003—1998[S].日本:日本电气技术标准调查委员会,1998.
[6]中国电力工程顾问集团西北电力设计院. 电力设施抗震设计规范:GB 50260—2013[S].北京:中国计划出版社,2013.
[7]中国电力科学研究院.特高压瓷绝缘电气设备抗震设计及减震装置安装与维护技术规程:Q/GDW 11132—2013[S]北京:国家电网公司,2014.
[8]程永锋,朱全军,卢智成. 变电站电力设施抗震措施研究现状与发展趋势[J]. 电网技术,2008, 32(22):84-89. CHENG Yongfeng, ZHU Quanjun, LU Zhicheng. Progress and development trend on seisnic measures of electric power equipments in transformer substation[J]. Power System Technology, 2008, 32(22): 84-89.
[9]陈巍,高政国. 高压电气设备支架动力放大系数取值研究[J]. 科学技术与工程,2016, 16(6):182-186.CHEN Wei, GAO Zhengguo. Study on the value of tynamic magnification factors for high-voltage electric equipment support[J]. Science Technology and Engineering, 2016, 16(6): 182-186.
[10]Filiatrault A, Stearns C. Electrical substation equipment interaction: experimental rigid conductor studies[R]. Berkeley, USA: Pacific Earthquake Engineering Research Center, 2005.
[11]程永锋,卢智成,邱宁,等. 特高压支柱类瓷质电气设备支架动力放大系数研究[J]. 高电压技术,2015, 41(11):3651-3658.CHENG Yongfeng, LU Zhicheng, QIU Ning, et al. Study on support dynamic magnification coefficient about UHV pillar type porcelain electrical equipments[J]. High Voltage Engineering, 2015, 41(11): 3651-3658.
[12]孟宪政,代泽兵,卢智成,等. 500 kV避雷器抗震性能振动台试验研究[J]. 电力建设,2014, 35(1):35-39. MENG Xianzheng, DAI Zebing, LU Zhicheng, et al. Shaking table test for seisimic performance of 500 kV arrester[J]. Electric Power Construction, 2014, 35(1): 35-39.
[13] 于金光,郝际平,解琦,等. 美日中高压电气设备地震动力反应放大系数比较研究[J]. 土木工程学报,2010, 43(S1):77-80.YU Jinguang, HAO Jiping, XIE Qi, et al. Comparative study on dynamic response magnification factors for high-voltage electric equipment between American Japanese and Chinese[J]. China Civil Engineering Journal, 2010, 43(S1): 77-80.
[14]程永锋,刘振林,卢智成,等. ± 800 kV支柱复合绝缘子抗震试验研究[J]. 中国电力,2017, 50(10):89-96. CHENG Yongfeng, LIU Zhenlin, LU Zhicheng, et al. Experimental study on seismic performance of ±800 kV pillar composite insulators[J]. Electric Power, 2017, 50(10): 89-96.
[15]彭添,何畅,卓然,等. ±800 kV特高压直流隔离开关抗震性能分析[J]. 智能电网,2017, 5(2):111-117.PENG Tian, HE Chang, ZHUO Ran, et al. Seismic performance Analysis of ±800 kV UHV DC disconnecto[J]. Smart Grid, 2017, 5(2): 111-117.
[16]柏文,戴君武,宁晓晴,等. 电流互感器抗震性能及减震振动台试验[J]. 世界地震工程,2017, 33(3):1-6. BAI Wen, DAI Junwu, NING Xiaoqing, et al. Anti-seismic performance of current transformer and shock-absorbing shaking table test[J]. World Earthquake Engineering, 2017, 33(3): 1-6.
[17]余欢,胡小龙,吴必华,等. 1 000 kV变电站中1 000 kV设备支架结构设计选型[J]. 武汉大学学报:工学版,2008, 41(S1):264-267.YU Huan, HU Xiaolong, WU Bihua, et al. Selection of 1 000 kV equipment truss structures in 1 000 kV substation[J]. Engineering Journal of Wuhan University, 2008, 41(S1): 264-267.
[18]胡聿贤. 地震工程学[M]. 北京:地震出版社,1988.
[19]刘振林,卢智成,张搏宇,等. 特高压瓷套避雷器标准化抗震性能优化[J]. 电网技术,2016, 40(5):1570-1575.LIU Zhenlin, LU Zhicheng, ZHANG Boyu, et al. Optimization research on seismic safety performance of UHV porcelain bushing lightning arrester standardization[J]. Power System Technology, 2016, 40(5): 1570-1575.
[20]陈巍,范荣全,曹枚根,等. 高压电气支柱法兰胶装结点等效弯曲模量研究[J]. 电瓷避雷器,2016(5):7-13.CHEN Wei, FANRongquan, CAO Meigen, et al. Optimization research on seismic safety performance of UHV porcelain bushing lightning arrester standardization[J]. Insulators and Surge Arresters, 2016(5): 7-13.
[21] 中国建筑科学研究院.建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2016.
[22]朱祝兵,代泽兵,卢智成,等. 特高压电气设备法兰连接处的弯曲刚度试验研究[J]. 中国电力,2014, 47(6):6-11.ZHUZhoubing, DAI Zebing, LU Zhicheng, et al. Experimental study of the bending rigidity at flange connection of UHV electrical equipment[J]. Electric Power, 2014, 47(6): 6-11.
[23]DASTOUS J B, FILIATRAULT A, PIERRE J R. Estimation of displacement at interconnection points of substation equipment subjected to earthquakes[J]. IEEE Transactions on Power Delivery, 2004, 19(2): 618-628.

备注/Memo

备注/Memo:
收稿日期:2018-06-13作者简介:张小军(1984—),男,硕士,主要从事电力设施抗震及减隔震研究。基金项目:国家电网公司工程专项科技项目(编号:SGSD0000JJJS1800508)。
更新日期/Last Update: 2020-04-25