[1]刘三伟,巢亚峰,王 峰,等.考虑土壤放电现象的接地装置冲击特性研究分析[J].电瓷避雷器,2020,(02):72-80.[doi:10.16188/j.isa.1003-8337.2020.02.012]
 LIU Sanwei,CHAO Yafeng,WANG Feng,et al.Impulse Performance Analysis of Grounding Devices Considering Soil Discharge[J].,2020,(02):72-80.[doi:10.16188/j.isa.1003-8337.2020.02.012]
点击复制

考虑土壤放电现象的接地装置冲击特性研究分析()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
72-80
栏目:
避雷器
出版日期:
2020-04-25

文章信息/Info

Title:
Impulse Performance Analysis of Grounding Devices Considering Soil Discharge
作者:
刘三伟 巢亚峰 王 峰 岳一石 黄福勇 王 成 段建家
(国网湖南电力公司电力科学研究院, 长沙 410007)
Author(s):
LIU Sanwei CHAO Yafeng WANG Feng YUE YishiHUANG Fuyong WANG Cheng DUAN Jianjia
(Electric Power Research Institute of State Grid Hunan Electric Power Company, Changsha 410007, China)
关键词:
接地装置 冲击特性 土壤放电 X射线数字成像 土壤放电特性电参数 电磁场法
Keywords:
grounding device impulse performance soil discharge X-ray digital imaging technology soil discharge characteristics electric parameters electromagnetic field method
DOI:
10.16188/j.isa.1003-8337.2020.02.012
摘要:
现有研究表明,为满足接地装置冲击特性准确计算的需求,有必要考虑土壤放电现象的影响。本文从土壤放电成像技术、土壤冲击击穿机理以及接地装置冲击特性的计算方法3个方面,综合分析评价了目前对于土壤放电现象的研究进展。通过归纳与分析,总结了土壤放电现象研究的热点和难点,指出了这一研究方向上迫切需要解决的技术问题,并建议给出了解决思路。推荐采用X射线数字成像技术对土壤放电过程进行观测,采集土壤放电重要影像数据以研究土壤放电区域结构模型; 在确定土壤放电区域结构模型的基础上,准确计算土壤放电特性电参数(土壤临界击穿场强和土壤放电区域剩余电阻率),并用于暂态模型计算中; 综合对比接地装置数值计算方法的优缺点,推荐采用电磁场方法用于冲击特性的计算。
Abstract:
The existing studies show that it is necessary to consider the soil discharge phenomenon, to meet the need in calculating impulse characteristics of grounding device accurately. This paper analyzes and estimates the study progress of soil discharge phenomenon from the perspective of soil discharge imaging technology, soil impulse breakdown mechanism, and impulse characteristics of grounding device. According to the conclusion and analysis, the hotspot and difficultly in the study of soil discharge phenomenon has been summarized, the technological bottleneck to be solved has been indicated, and the solved direction is advised. The X-ray digital imaging technology is suggested to be applied on soil discharge observation, and collecting vital soil discharge image data to study the soil discharge region model. On this basis, the soil discharge characteristics electric parameters(soil critical breakdown electric field strength and residual resistivity of discharge region)can be calculated precisely and used in transient models. By the contrast of all numerical methods of grounding device, the electromagnetic field method is recommended to be adopted.

参考文献/References:

[1] 解广润.电力系统接地技术[M].北京:水利电力出版社,1991.
[2]章润陆, 陆宠惠,陈玉书,等. 输电线路绕击跳闸率的计算方法和500 kV超高压线路防雷设计的几个问题[J]. 高电压技术,1983(2): 95-99.
[3]陈先禄,刘渝根,黄勇.接地[M].重庆:重庆大学出版社,2002.
[4]陶玉郎,冯建伟. 张其林,等.基于FDTD方法的垂直接地体冲击时-频特性分析[J]. 电瓷避雷器,2018(1):68-76.TAO Yulang, FENG Jianwei, ZHANG Qilin,et al. Analysis of impulse characteristic of vertical grounding electrode in frequency and time domain based on FDTD[J].Insulators and Surge Arresters, 2018(1):68-76.
[5]MAZZETTI C, VECA G M. Impulse behavior of ground electrodes[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(9): 3148-3156.
[6]MOUSA A M. The soil ionization gradient associated with discharge of high currents into concentrated electrodes[J]. Power Delivery, IEEE Transactions on, 1994, 9(3): 1669-1677.
[7]BELLASCHI P L, ARMINGTON R E, SNOWDEN A E. Impulse and 60-Cycle characteristics of driven grounds - II[J]. Electrical Engineering, 1942, 61(6): 349-363.
[8]李腾飞,罗日成,潘俊文,等. 降阻剂对垂直型直流接地极电气性能参数影响分析[J]. 电瓷避雷器,2018(1):132-136.LI Tengfei,LOU Richeng,PAN Junwen,Analysis of influence of resistance reducing material on electrical characteristics of vertical DC ground electrode[J]. Insulators and Surge Arresters, 2018(1):132-136.
[9]TOWNE H M. Impulse characteristics of driven grounds[J]. General Electric Review, 1929(11): 605-609.
[10]GERI A. Behaviour of grounding systems excited by high impulse currents: the model and its validation[J]. Power Delivery, IEEE Transactions on, 1999, 14(3): 1008-1017.
[11]NEKHOUL B, LABIE P, ZGAINSKI F X, et al. Calculating the impedance of a grounding system[J]. IEEE Transactions on Magneticsn, 1996(3): 1509-1512.
[12]OTANI K, BABA Y, NAGAOKA N, et al. FDTD surge analysis of grounding electrodes considering soil ionization[J]. Electric Power Systems Research, 2014, 113(SI): 171-179.
[13]VIOLA F, ROMANO P, MICELI R. Finite-difference time-domain simulation of towers cascade under lightning surge conditions[J]. IEEE Transactions on Industry Applications, 2015, 51(6, 2): 4917-4923.
[14]LI Jingli, YUAN Tao, YANG Qing, et al. Numerical and experimental investigation of grounding electrode impulse-current dispersal regularity considering the transient ionization phenomenon[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2647-2658.
[15]HABJANIC A, TRLEP M. The simulation of the soil ionization phenomenon around the grounding system by the finite element method[J]. IEEE Transactions on Magnetics, 2006, 42(4): 867-870.
[16]高延庆.土壤冲击击穿机理及接地系统暂态特性研究[D].北京:清华大学,2003.
[17]LIU Sanwei, SIMA W, YUAN Tao, et al. Study on X-ray imaging of Soil discharge and calculation method of the ionization parameters[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2013-2021.
[18]He J, Zeng R, Zhang B. Methodology and technology for power system grounding[M]. John Wiley & Sons Inc, 2013.
[19]SONG Z, RAGHUVEER M R, HE J. Influence of the nature of impulse current propagation in soils on transient impedance characteristics[C]//Electrical Insulation and Dielectric Phenomena. 2000 Report Conference on IEEE, 2000, 739-742.
[20]夏长征,陈慈萱.单位长度伸长接地体冲击特性的真型试验[J].高电压技术,2001(3):34-35.
[21]GAO Y, HE J, ZOU J, et al. Fractal simulation of soil breakdown under lightning current[J]. Journal of Electrostatics, 2004(3): 197-207.
[22]ZHANG Bp, HE Jl, ZENG R. Spatially discontinuous ionization phenomenon in inhomogeneous soil[J]. Science China Technological Sciences, 2010(4): 918-921.
[23]WANG Junping, LIEW A C, DARVENIZA M. Extension of dynamic model of impulse behavior of concentrated grounds at high currents[J]. Power Delivery, IEEE Transactions on, 2005, 20(3): 2160-2165.
[24]ELZOWAWI A, HADDAD A, GRIFFITHS H. Visualization of the Ionisation phenomenon in porous materials under lightning impulse[C].Asia-pacific International Conference on Lightning, 2015(3):1222–1235.
[25]RAKOV V A. Triggered Lightning[M]. Springer Netherlands, 2009.
[26]RAKOV V A, UMAN M A, RAMBO K J, et al. New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama[J]. Journal of Geophysical Research Atmospheres, 1998(D12): 14117-14130.
[27]苟量,王绪本,曹辉.X射线成像技术的发展现状和趋势[J].成都理工学院学报,2002, 29(2):227-231.GOU Liang, WANG Xuben, CAO Hui. The present state and future development of X-ray imaging technology[J]. Journal of Chengdu University of Technology, 2002, 29(2): 227-231.
[28]程耀瑜.工业射线实时成像检测技术研究及高性能数字成像系统研制[D].南京:南京理工大学,2003.
[29]刘宾.高动态范围X射线成像技术与系统[D].太原:中北大学,2014.
[30]李衍.数字射线照相法现状评述[J].影像技术,2005(1):52-54.
[31]杨柳.X射线图像传感及数字成像实验的研究[D].重庆:重庆大学,2008.
[32]陈树越,路宏年.数字式X射线成像无损检测技术[J].华北工学院学报,1999, 20(1):49-53.CHEN Shuyue, LU Hongnian. Research and development of digital x-ray radiography in nondestructive testing[J]. Journal of North ChinaInstitute of Technology, 1999, 20(1): 49-53.
[33]BELLASCHI P L. Impulse and 60-Cycle characteristics of driven grounds[J]. American Institute of Electrical Engineers, Transactions of the, 1941, 60(3): 123-128.
[34]KOSZTALUK R, LOBODA M, MUKHEDKAR D. Experimental study of transient groundimpedances[J]. IEEE Transactions on Power Apparatus & Systems, 1981(11): 4653-4660.
[35]PETROPOULOS G M. The high-voltage characteristics of earth resistances[J]. Electrical Engineers Proceedings of the Institution, 1948(43): 59-70.
[36]GERI A, VECA G M, GARBAGNATI E, et al. Non-linear behaviour of ground electrodes under lightning surge currents:computer modelling and comparison with experimental results[J]. IEEE Transactions on Magnetics, 1992(2): 1442-1445.
[37]李景丽.接地网频域性能及杆塔接地极冲击特性的数值分析及试验研究[D].重庆:重庆大学,2011.
[38]朱彬.土壤电参数变化特性及其对接地装置性能的影响研究[D].重庆:重庆大学,2015.
[39]OETTLE E E. A new general estimation curve for predicting the impulse impedance of concentrated earth electrodes[J]. Power Delivery, IEEE Transactions on, 1988, 3(4): 2020-2029.
[40]Lightning C W G O. Guide to procedures for estimating the lightning performance of transmission lines[R].Paris: CIGRE, 1991.
[41]NOR N M, HADDAD A, GRIFFITHS H. Determination of threshold electric field E C of soil under high impulse currents[J]. IEEE Transactions on Power Delivery, 2005(3): 2108-2113.
[42]HE Jl, GAO Yq, ZENG R, et al. Soil ionization phenomenon around grounding electrode under lightning impulse[Z].Säo Paulo, 2005.
[43]LIU Y, THEETHAYI N, GONZALEZ R M, et al. The residual resistivity in soil ionization region around grounding system for different experimental results[C].IEEE International Symposium on Electromagnetic Compatibility, IEEE, 2004(2):794-799.
[44]OTERO A F. Cidraás J,Del Alamo J L. frequency-dependent grounding system calculation by means of a conventional nodal analysis technique[J]. IEEE Transactions on Power Delivery, 1999(3): 873-878.
[45]GUPTA B R, THAPAR B. Impulse impedance of grounding grids[J]. IEEE Transactions on Power Apparatus&Systems, 1980(6): 2357-2362.
[46]RAMAMOORTYM, NARAYANAN M B, PARAMESW-ARAN S, et al. Transient performance of grounding grids[J]. IEEE Power Engineering Review, 1989(10): 48-55.
[47]郭剑.变电站接地系统冲击特性的全时分析方法研究[D].北京:清华大学,2005.
[48]吴茂林,崔翔.变电站地电位差对屏蔽电缆的电磁干扰分析[J].高电压技术,2005, 31(3):53-55.WU Maolin, CUI Xiang. Analysis of electromagnetic interference in shielded cables caused by ground potential difference in substations[J]. High Voltage Engineering, 2005, 31(3): 53-55.
[49]NEKHOUL B, LABIE P, ZGAINSKI F X, et al. Calculating the impedance of a groundingsystem[J]. IEEE Transactions on Magnetics, 1996(3): 1509-1512.
[50]NOR N M, TRLEP M, ABDULLAH S, et al. Determination of threshold electric field of practical earthing systems by FEM and experimental work[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2180-2184.
[51]FENG Zhiqiang, WEN Xishan, TONG Xuefang, et al. Impulse characteristics of tower grounding devices considering soil ionization by the time-domain difference method[J]. IEEE Transactions on Power Delivery, 2015, 30(4): 1906-1913.
[52]Dos Santos T L T, De Oliveira R M S, Da S S S C L, et al. Soil ionization in different types of grounding grids simulated by FDTD method[C]. Microwave and Optoelectronics Conference, IEEE, 2009:127-132.
[53]GRCEV L D, HEIMBACH M. Frequency dependent and transient characteristics of substation grounding systems[J]. IEEE Transactions on Power Delivery, 1997(1): 172-178.
[54]HEIMBACH M, GRCEV L D. Grounding system analysis in transients programs applying electromagnetic field approach[J]. IEEE Transactions on Power Delivery, 1997(1): 186-193.
[55]Arnautovski-Toseva V, Grcev L. High frequency current distribution in horizontal grounding systems in two-layer soil[C].IEEE International Symposium on Electromagnetic Compatibility, IEEE, 2003(1):205-208.
[56]XIONG W, DAWALIBI F P. Transient performance of substation grounding systems subjected to lightning and similar surge currents[J]. IEEE Transactions on Power Delivery, 1994(3): 1412-1420.
[57]DAWALIBI F P, XIONG W, MA J. Transient performance of substation structures and associated grounding systems[J]. IEEE Transactions on Industry Applications, 1995(3): 520-527.
[58]张波.变电站接地网频域电磁场数值计算方法研究及其应用[D].保定:华北电力大学,2003.
[59]杨慧娜.大地模型的确定与接地网暂态模拟计算[D].北京:清华大学,2003.
[60]QI L, CUI X, ZHAO Z, et al. Grounding performance analysis of the substation grounding grids by finite element method in frequency domain[J]. IEEE Transactions on Magnetics, 2006(4): 1181-1184.
[61]TRLEP M, HAMLER A, JESENIK M, et al. The FEM-BEM analysis of complex grounding systems[J]. IEEE Transactions on Magnetics, 2003(3): 1155-1158.
[62]甘艳,阮江军,陈允平.一维有限元与三维有限元耦合法在接地网特性分析中的应用[J].电网技术,2004, 28(9):62-66.GAN Yan, RUAN Jiangjun, CHEN Yunping. Application of unidimensional finite element method(fem)coupled with three dimensional fem in characteristics analysis of grounding mesh property[J]. Power System Technology, 2004, 28(9): 62-66.
[63]NEKHOUL B, GUERIN C, LABIE P, et al. A finite element method for calculating the electromagnetic fields generated by substation grounding systems[J]. IEEE Transactions on Magnetics, 1995(3): 2150-2153.
[64]SONG Z, RAGHUVEER M R, HE J. Model for prediction of characteristics of lightning breakdown channels in soil in the presence of a buried cable[J]. IEE Proceedings-Generation Transmission and Distribution, 2003, 150(5): 623-628.

备注/Memo

备注/Memo:
收稿日期:2018-07-06作者简介:刘三伟(1990—),男,博士,工程师,研究方向为高电压与绝缘技术。
更新日期/Last Update: 2020-04-25