[1]周晨梦,罗日成,李 稳,等.±800 kV直流输电线路正极性侧带电作业电位转移放电特性研究[J].电瓷避雷器,2020,(02):15-19,25.[doi:10.16188/j.isa.1003-8337.2020.02.003]
 ZHOU Chenmeng,LUO Richeng,LI Wen,et al.Study on Discharge Characteristics of Potential Transfer of Live Working on the Positive Polar Side of ± 800 kV DC Transmission Line[J].,2020,(02):15-19,25.[doi:10.16188/j.isa.1003-8337.2020.02.003]
点击复制

±800 kV直流输电线路正极性侧带电作业电位转移放电特性研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
15-19,25
栏目:
避雷器
出版日期:
2020-04-25

文章信息/Info

Title:
Study on Discharge Characteristics of Potential Transfer of Live Working on the Positive Polar Side of ± 800 kV DC Transmission Line
作者:
周晨梦1 罗日成1 李 稳2 李智琦1 史志强1 隆晨海2 郑云龙1 杨 鑫1
(1.长沙理工大学电气与信息工程学院, 长沙 410004; 2.国网湖南省电力有限公司检修公司, 长沙 410018)
Author(s):
ZHOU Chenmeng1 LUO Richeng1 LI Wen2 LI Zhiqi1 SHI Zhiqiang1LONG Chenhai2 ZHENG Yunlong1YANG Xin1
(1.School of Electrical and information Engineering,Changsha University of Science & Technology, Changsha 410004, China; 2.Maintenance Company of State Grid Hunan Electric Power Company, Changsha 410018, China)
关键词:
±800 kV 带电作业 电位转移 流注放电 放电电流
Keywords:
±800 kV live working potential transfer streamer discharge discharge current
DOI:
10.16188/j.isa.1003-8337.2020.02.003
摘要:
为明确±800 kV直流输电线路带电作业电位转移放电特性,考虑强电场作用下粒子产生、运动和消散过程,构建了基于流体力学理论的电位转移流注放电模型,计算并分析了放电过程中的电场强度、流注发展速度和电流密度随时间的变化规律,以及不同转移距离下的放电电流。结果表明:在电位转移放电过程中,随着放电时间的增加,流注头部电场强度减小、流注发展速度加快、电流密度增大; 电位转移棒与导线间的放电电流随着电位转移距离的减小而增大; 确定了±800 kV输电线路在正极性导线侧带电作业时最佳电位转移距离为0.45 m左右。
Abstract:
In order to clarify the discharge characteristics of potential transfer of live working on ±800 kV DC transmission lines, considering the particle generation, motion and dissipation process under the action of strong electric field, a potential transfer streamer discharge model based on the theory of hydrodynamics is established. The electric field intensity, the developing speed of streamer and the current density change with time are calculated and analyzed, and the discharge current under different transfer distance is also calculated and analyzed. The results show that with the increase of the discharge time, the electric field intensity of the head of the streamer decreases during the process of discharge of potential transfer; the speed of the streamer development increases and current density increases. The discharge current between the potential transfer rod and the wire will increase as the potential transfer distance decreases. The optimum potential transfer distance is about 0.45m when the live working on the positive polar side of ±800 kV transmission line.

参考文献/References:

[1] 乔骥,邹军,鄂天龙,等.有屏蔽线时特高压直流输电线路地面电场与离子流场计算与分析[J].电网技术,2017, 41(7):2386-2392.QIAO Ji, ZOU Jun, E Tianlong, et al. Calculation of ground-level electric field and ion flow of HVDC transmission lines with shield wires[J]. Power System Technology, 2017, 41(7): 2386-2392.
[2]孟遂民,徐文洋,唐波,等.基于模糊层次分析法的特高压直流输电线路带电作业安全评价[J].高压电器,2016, 52(11):42-46.MENG Suimin, XU Wenyang, TANG Bo, et al. FAHP-based safety evaluation for live-line working on ultra high voltage DC transmission line[J]. High Voltage Apparatus, 2016, 52(11): 42-46.
[3]蔡新景,王新新,邹晓兵,等.大气压下不同气体的流注放电特性[J].高电压技术,2015, 41(6):2047-2053.CAI Xinjing, WANG Xinxin, ZOU Xiaobing, et al. Properties of streamer discharges in different gases at atmospheric pressure[J]. High Voltage Engineering, 2015, 41(6): 2047-2053.
[4]刘夏清,李稳,姜赤龙,等.±1 100 kV直流输电线路带电作业电位转移特性研究[J].高电压技术,2017, 43(10):3149-3153.LIU Xiaqing, LI Wen, JIANG Chilong, et al. Study on transient characteristics of the potential transfer of live working on ±1 100 kV HVDC transmission line[J]. High Voltage Engineering, 2017, 43(10): 3149-3153.
[5]刘凯,吴田,刘庭,等.±800 kV特高压直流输电线路的电位转移电流特性[J].高电压技术,2013, 39(3):568-576.LIU Kai, WU Tian, LIU Ting, et al. Characteristics of potential transfer current of ±800 kV UHVDC transmission line[J]. High Voltage Engineering, 2013, 39(3): 568-576.
[6]王建林,靳斌,李博文,等.基于有限元法的同走廊交直流线路混合电场的计算研究[J].山东理工大学学报:自然科学版,2017, 31(3):46-50, 54.WANG Jianlin, JIN Bin, LI Bowen, et al. Calculation of hybrid electric field of AC/DC transmission lines ereted in a common corridor based on the finite element method[J]. Journal of Shandong University of Technology(Natural Science Editionn), 2017, 31(3): 46-50, 54.
[7]刘兴华.基于流体—化学反应混合模型的空气放电机理及特性研究[D].重庆:重庆大学,2012.
[8]庄池杰,耿屹楠,曾嵘.基于不连续有限元的短间隙气体放电仿真算法及其应用[J].高电压技术,2013, 39(4):970-978.ZHUANG Chijie, GENG Yinan, ZENG Rong. Discontinuous galerkin method for short air gap discharge simulations and its applications[J]. High Voltage Engineering, 2013, 39(4): 970-978.
[9]谢耀恒,贺恒鑫,陈维江,等.操作冲击下正极性长间隙放电物理仿真模型[J].中国电机工程学报,2013, 33(31):177-184.XIE Yaoheng, HE Hengxin, CHEN Weijiang, et al. A physical model to simulate long air gap discharge at positive switching impulse voltage[J]. Proceedings of the CSEE, 2013, 33(31): 177-184.
[10]SIMA W, PENG Qingjun, YANG Qing, et al. Study of the characteristics of a streamer discharge in air based on a plasma chemical model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 660-670.
[11] YUE Yishi, HE Junjia. Digital time-resolved optical measurement of discharge currents in long air gaps[J]. The Review of Scientific Instruments, 2013, 84(8): 085107.
[12]GEORGHIOU G E, PAPADAKIS A P, MORROW R, et al. Numerical modelling of atmospheric pressure gas discharges leading to plasma production[J]. Journal of Physics D-Applied Physics, 2005, 38(20): R303-R328.
[13]MORROW R, LOWKE J J. Streamer propagation in air[J].Journal of Physics D:Applise Physics, 1997, 30(4): 614-627.
[14]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.------NEXT MATCH---参考文献:

备注/Memo

备注/Memo:
收稿日期:2019-07-06作者简介:周晨梦(1994—),女,硕士研究生,研究方向为输电带电作业技术,气体放电。基金资助项目:国家自然科学基金青年基金项目(编号:51407013); 湖南省教育厅科学研究项目(编号:15C0031)。
更新日期/Last Update: 2020-04-25