[1]姚晓通,刘 力,李致远.基于Canny边缘特征点的接触网绝缘子识别方法[J].电瓷避雷器,2020,(01):142-148.[doi:10.16188/j.isa.1003-8337.2020.01.024]
 YAO Xiaotong,LIU Li,LI Zhiyuan.Identification Method of Catenary Insulator Based on Canny Edge Feature Point[J].,2020,(01):142-148.[doi:10.16188/j.isa.1003-8337.2020.01.024]
点击复制

基于Canny边缘特征点的接触网绝缘子识别方法()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
142-148
栏目:
绝缘子
出版日期:
2020-02-20

文章信息/Info

Title:
Identification Method of Catenary Insulator Based on Canny Edge Feature Point
作者:
姚晓通刘 力李致远
(兰州交通大学电子与信息工程学院,兰州 730070)
Author(s):
YAO XiaotongLIU LiLI Zhiyuan
(School of Electronic and Information Engineering, Lanzhou Jiaotong Univeristy, Lanzhou 730070,China)
关键词:
图像匹配 绝缘子 边缘检测 SURF算法 RANSAC算法
Keywords:
image matching insulator edge detection SURF algorithm RANSAC algorithm
DOI:
10.16188/j.isa.1003-8337.2020.01.024
摘要:
针对使用机器视觉技术对接触网绝缘子状态检测时的绝缘子识别问题,提出一种结合Canny边缘特征和SURF点特征的绝缘子识别算法。该算法首先提取图像边缘特征,然后使用SURF算法在边缘图像上提取特征点,并利用Haar小波对特征点进行描述; 对检测出的特征点使用欧氏距离比值法进行初匹配; 最后用RANSAC算法消除由噪声等干扰产生的错误匹配,从而实现接触网绝缘子智能识别。实验结果表明,该算法能在有背景干扰、小幅度旋转的目标图像中准确识别出绝缘子,为电气化铁路接触网绝缘子智能清洗的视觉识别定位问题提供了可行参考。
Abstract:
The identification method in contact insulator state detection using machine vision technology is discussed. An insulator recognition algorithm combining Canny edge features and SURF point features is presented. This algorithm firstly extracts image edge features, then uses SURF algorithm to extract feature points on edge images, and uses Haar wavelet to describe feature points, and Euclidean distance ratio method is adopted to match the detected feature points. Finally, the RANSAC algorithm is used to eliminate the error matching caused by noise and other disturbances, so as to realize the intelligent identification of the insulators in the catenary. The test results show that the algorithm can accurately identify insulators in target images with background interference and small rotation, which provides a feasible reference for visual identification and location of insulators in electrified railway catenary.

参考文献/References:

[1] 黄宵宁,张真良.直升机巡检航拍图像中绝缘子图像的提取算法[J].电网技术,2010, 34(1):194-197. HUANG Xiaoning, ZHANG Zhenliang. A method to extract insulator image from aerial image of helicopter patrol[J]. Power System Technology, 2010, 34(1): 194-197.
[2] 何洪英,姚建刚,蒋正龙,李伟伟.利用红外图像特征和径向基概率神经网络识别不同湿度条件下绝缘子的污秽等级[J].中国电机工程学报,2006, 26(8):117-123. HE Hongying, YAO Jiangang, JIANG Zhenglong, LI Weiwei. Contamination grades recognition of insulators under different humidity using infrared image features and RBPNN[J]. Proceedings Of The Chinese Society For Electrical Engineering, 2006, 26(8): 117-123.
[3] 姚建刚,关石磊,陆佳政,蒋正龙,赵纯,夏德分,钱艳萍.相对温度分布特征与人工神经网络相结合的零值绝缘子识别方法[J].电网技术,2012, 36(2):170-175. YAO Jiangang, GUAN Danlei, LU Jiazheng, JIANG Zhenglong, ZHAO Chun, XIA Defen, QIAN Yanping. Identification of Zero resistance insulators by combining relative temperature distribution characteristics with artificial neural network[J]. Power System Technology, 2012, 36(2): 170-175.
[4] 林聚财,韩军,陈舫明,徐雄,王亚萍.基于彩色图像的玻璃绝缘子缺陷诊断[J].电网技术,2011, 35(1):127-133. LIN Jucai, HAN Jun, CHEN Fangming, XU Xiong, WANG Yaping. Defects detection of glass insulator based on color image[J]. Power System Technology, 2011, 35(1): 127-133.
[5] 仝卫国.基于航拍图像的输电线路识别与状态检测方法研究[D].北京:华北电力大学,2011.
[6] 李卫国,叶高生,黄锋,王世坤,常文治.基于改进MPEG-7纹理特征的绝缘子图像识别[J].高压电器,2010, 46(10):65-68. LI Weiguo, YE Gaosheng, HUANG Feng, WANG Shikun, CHANG Wenzhi. Recognition of insulator based on developed MPEG-7 texture feature[J]. High Voltage Apparatus, 2010, 46(10): 65-68.
[7] 林萍,王黎,罗林.基于SIFT的高速列车车顶瓷瓶识别方法[J].机车电传动,2012(5):87-89. LIN Ping, WANG Li, LUO Lin. High-speed Locomotive Porcelain Positioning Method Based on SIFT[J]. Electric Drive for Locomotive, 2012(5): 87-89.
[8] 李岩.基于HOG特征和SVM的绝缘子识别与定位[J].交通运输工程与信息学报,2015, 13(4):53-60. LI Yan. Insulator location and recognition algorithm based on HOG characteristics and SVM[J]. Journal of Transportation Engineering and Information, 2015, 13(4): 53-60.
[9] 张桂南,刘志刚.基于角点匹配与谱聚类的接触网绝缘子破损/夹杂异物故障检测[J].仪器仪表学报,2014, 35(6):1370-1377. ZHANG Guinan, LIU Zhigang. Fault detection of catenary insulator damage/foreign material based on corner matching and spectral clustering[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 1370-1377.
[10] 王伟旭,刘志刚,栗敏,张桂南.基于曲波变换的高铁绝缘子状态检测方法[J].电气化铁道,2013(6):5-8. WANG Weixu, LIU Zhigang, LI Min, ZHANG Guina. Curvelet transform based method for detection of state of high speed railway insulators[J]. Electric Railway, 2013(6): 5-8.
[11] 林文文,邓斌,于兰英,吴文海.一种基于颜色和相关参照特征的铁路绝缘子识别方法[J].电瓷避雷器,2016(6):40-44. LIN Wenwen, DENG Bin, YU Lanying, WU Wenhai. Identification method for railway insulator based on color and relevant reference feature[J]. Insulators and Surge Arresters, 2016(6): 40-44.
[12] 翟雨微.基于改进的SIFT图像匹配算法研究[D].长春:吉林大学,2017.
[13] Harris C J,Stephens M. A combined corner and edge detector[C]//Proceedings of the 4th Alive Vision Conference,UK,1988:147-151.
[14] LOWE D G. Distinctive image features from Scale-Invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[15] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up robust feature[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[16] 王智文.几种边缘检测算子的性能比较研究[J].制造业自动化,2012, 34(11):14-16. WANG Zhiwen. Comparison research of capability of several detection operators for edge detection[J]. Manufacturing Automation, 2012, 34(11): 14-16.
[17] 厉丹,钱建生,芦楠楠,周均民,田文科.图像边缘检测技术的改进[J].计算机工程与应用,2010, 46(18):164-166. LI Dan, QIAN Jiansheng, LU Nannan, ZHOU Junmin, TIAN Wenke. Improving of image edge detection technique[J]. Computer Engineering and Applications, 2010, 46(18): 164-166.
[18] SZELISKI R. Computer vision: algorithms and applications[M]. London: Springer Verlag, 2011.
[19] FISCHER M A, BOLLS R C. Random sample consensus: a paradigm for model fitting matching with applications to image analysis and automated cartography[J]. ACM Graphics and Image Processing, 1981, 25(6): 381-395.

备注/Memo

备注/Memo:
收稿日期:2018-05-10作者简介:姚晓通(1972—),男,副教授,博士研究生,主要研究方向为机器视觉与运动控制、大数据与人工智能及现代电子测量。基金项目:国家自然科学基金(编号:51567014); 甘肃省科技计划项目(编号:17CX2JA022、18CX6JA022)。
更新日期/Last Update: 2020-02-20