[1]姜龙杰,宋余来,元乙贺,等.风电场接地系统雷电冲击特性的研究[J].电瓷避雷器,2020,(01):104-110.[doi:10.16188/j.isa.1003-8337.2020.01.018]
 JIANG Longjie,SONG Yulai,YUAN Yihe,et al.Study on Lightning Impulse Characteristics of Wind Farm Grounding System[J].,2020,(01):104-110.[doi:10.16188/j.isa.1003-8337.2020.01.018]
点击复制

风电场接地系统雷电冲击特性的研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
104-110
栏目:
避雷器
出版日期:
2020-02-20

文章信息/Info

Title:
Study on Lightning Impulse Characteristics of Wind Farm Grounding System
作者:
姜龙杰1 宋余来2 元乙贺2 杨 宁2 王鹏宇2 孔 深2
(1.国网临沂供电公司,山东 临沂 276000; 2.东北电力大学电气工程学院,吉林 吉林 132012)
Author(s):
JIANG Longjie1 SONG Yulai2 YUAN Yihe2 YANG Ning2 WANG Pengyu2 KONG Shen2
(1.State Grid Linyi Power Supply Company, Linyi 276000, China; 2.Electrical Engineering College, Northeast Electric Power University, Jilin 132012, China)
关键词:
风电机组 冲击特性 火花效应 散流半径 垂直接地极
Keywords:
wind turbine impact characteristics spark effect divergence radius vertical grounding electrode
DOI:
10.16188/j.isa.1003-8337.2020.01.018
摘要:
良好的接地系统对于风电机组的正常运行至关重要。基于风机接地圆环的不等电位模型研究雷电流波头时间与入地点、雷电流幅值、土壤击穿场强、土壤电阻率等因素对风电机组接地系统雷电冲击特性的影响规律以及多年冻土地区通过对接地网敷设垂直接地极的散流效果。结果表明:雷电流经风机接地圆环中心注入时具有更好的散流效果,雷电流波头时间越短,接地导体的电感效应越强烈,风机冲击接地电阻越大; 随着雷电流幅值的增加,土壤的火花效应得以加强,风机接地圆环面积越小,冲击接地电阻降低越明显; 土壤临界击穿场强越小,接地网附近土壤越容易发生火花效应,风机冲击接地电阻越小; 风机接地网存在有效的散流半径,当接地网半径超过15 m时,散流效果不再明显增强; 随着土壤电阻率的增加,风机接地圆环面积较小时的散流效果有限,冲击接地电阻几乎呈线性增长,而风机大面积接地圆环的冲击接地电阻增长有限,很快趋于饱和; 对于存在多年冻土现象的地区,垂直接地极的散流效果较好,垂直接地极的布置不应过于密集,以减小导体之间的屏蔽效应。
Abstract:
Good grounding system is essential for the normal operation of the wind turbine. Based on the unequal potential model of the grounding ring of the fan, studies have been made on the lightning impulse characteristics of the grounding system of the wind turbine based on factors such as the time and location of the lightning current, lightning current amplitude, soil breakdown field strength, soil resistivity, as well as the effect of vertical grounding pole on the distribution of permafrost. The results show that lightning currents flow through the center of the fan's grounding ring have much better diffusing effect. The shorter the lightning current head time, the stronger the inductance effect of the grounding conductor, and the higher the impact resistance of the fan; With the increase of the lightning current amplitude, the spark effect of the soil is strengthened. The smaller the grounding ring area of the fan, the more obvious the impact grounding resistance decreases. The smaller the soil breakdown field strength, the easier the spark effect of the soil of the fan grounding ring is, and the smaller impact resistance of the fan is; There is an effective diffuser radius in the fan grounding network. When the radius of the grounding grid exceeds 15 m the diffuser effect is no longer significantly enhanced; With the increase of soil resistivity, the effect of scattered flow when the area of the fan grounding ring is small is limited, and the impact grounding resistance increases almost linearly. The impact grounding resistance of the large area grounding ring of the fan has limited growth, and it will soon become saturated; For areas where there are permafrost phenomena, vertical earthing poles have good dispersion effect, and in order to reduce the shielding effect between conductors, vertical earthing poles should not be arranged too densely.

参考文献/References:

[1] 何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007.
[2] 付国振,孟德东.风力发电防雷关键技术及研究进展[C]第32届中国气象学会年会论文集.天津,2015.
[3] 王洪泽,杨丹,王梦云.电力系统接地技术手册[M].北京:中国电力出版社,2007.
[4] 张宝平,何金良,康鹏,曾嵘.冻土冲击特性的试验研究[J].中国电机工程学报,2008, 28(16):143-147. ZHANG Baoping, HE Jinliang, KANG Peng, ZENG Rong. Experimental study on impulse characteristics of frozen Soil[J]. Proceedings of the CSEE, 2008, 28(16): 143-147.
[5] HE Jinliang, ZHANG Baoping, ZENG Rong. Experimental studies of impulse breakdown delay characteristics of Soil[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 1600-1607.
[6] 高延庆.土壤冲击击穿机理及接地系统暂态特性研究[D].北京:清华大学,2003.
[7] HABJANIC A, TRLEP M. The simulation of the soil ionization phenomenon around the grounding system by the finite element method[J]. IEEE Transactions on Magnetics, 2006, 42(4): 867-870.
[8] 刘继,叶涟远.长效化学降阻剂接地体大电流冲击特性的研究[J].高电压技术,1981, 6(4):1-8. LIU Ji, YE Lianyuan. Analysis of high current impulse characteristic on long-acting chemical drop resistance agent connect terrane[J]. High Voltage Engineering, 1981, 6(4): 1-8.
[9] 何金良,陈先禄.输电线路杆塔接地装置冲布特性的模拟原理[J].清华大学学报:自然科学版,1994, 34(4):38-43. HE Jinliang, CHEN Xianlu. The simulation theory of impusle characteristics of transmission-line Tower[J]. Journal of Tsinghua University:Natural Science Edition, 1994, 34(4): 38-43.
[10] 陈先禄,黄勇,张金玉,何金良.输电线路杆塔接地装置的冲击接地电阻计算公式[J].电网技术,1996, 20(6):9-12. CHEN Xianlu, HUANG Yong, ZHANG Jinyu,HE Jinliang. Calculation for mula of impulse grounding resistance for grounding device of power transmission Tower[J]. Power System Technology, 1996, 20(6): 9-12.
[11] 何金良,曾嵘,陈水明,李思芸,吴维韩,屠幼萍,孙为民.输电线路杆塔冲击接地电阻特性的模拟试验研究[J].清华大学学报:自然科学版,1999, 39(5):5-8. HE Jinliang, ZENG Rong, CHEN Shuiming,LI Siyun, WU Weihan, TU Youping, XUN Weimin. Simulating experiments of the impulse resistance characteristics of transmission-line grounding devices[J]. Journal of Tsinghua University(Science and Technology), 1999, 39(5): 5-8.
[12] 何金良,曾嵘,陈水明,李思芸,吴维韩,屠幼萍,孙为民..输电线路杆塔接地装置冲击系数及其拟合计算公式[J].清华大学学报:自然科学版,1999, 39(5):9-12. HE Jinliang, ZENG Rong, CHEN Shuiming,LI Siyun, WU Weihan, TU Youping, XUN Weimin. Impact coefficient and its fitting computational formulas of transmission-line grounding devices[J]. Journal of Tsinghua University:Natural Science Edition, 1999, 39(5): 9-12.
[13] 夏长征,陈慈萱.单位长度伸长接地体冲击特性的真型试验[J].高电压技术,2001, 27(3):34-35. XIA Changzheng, CHEN Cixuan. Impulse experiment for real extended grounding electrode in unit length[J]. High Voltage Engineering, 2001, 27(3): 34-35.
[14] 夏长征.伸长接地体冲击特性的研究[D].武汉大学博士论文,2002.
[15] 宋国强,张新燕.风力发电场防雷接地技术[J].电力学报,2012, 27(6):563-566. SONG Guoqiang, ZHANG Xinyan. Wind farms lightning protection and grounding technology[J]. Journal of Electric Power, 2012, 27(6): 563-566.
[16] 余光凯,张博,鲁铁成,胡泰山,徐东泽,张泓.风电场雷电反击暂态计算与分析[J].电瓷避雷器,2015(6):136-141. YU Guangkai, ZHANG Bo, LU Tiecheng,HU Taishan, XU Dongze, ZHANG Hong. Transient calculation and analysis on lightning back striking of wind farm[J]. Insulators and Surge Arresters, 2015(6): 136-141.
[17] 张小青.建筑物内电子设备的防雷保护[M].北京:电子工业出版社,2000.
[18] 王晓辉,张小青.考虑参数频变特性的风机塔体雷电暂态计算[J].高电压技术,2009, 35(6):1344-1349. WANG Xiaohui, ZHANG Xiaoqing. Lightning transients of wind turbine towers involving frequency-dependent characteristics[J]. High Voltage Engineering, 2009, 35(6): 1344-1349.
[19] MOUSA A M. The Soil ionization gradient associated with discharge of high currents in concentrated electrodes[J]. IEEE Transactions on Power Delivery, 1994, 9(3): 1669-1677.
[20] 徐华,文习山,李中建,张英.大型变电站钢材和铜材接地网的性能比较[J].高电压技术,2004, 30(7):18-19, 63. XU Hua, WEN Xishan, LI Zhongjian,ZHANG Ying. Performance comparison of copper and steel material grounding grids of large substation[J]. High Voltage Engineering, 2004, 30(7): 18-19, 63.
[21] 于建国.季节性冻土条件下的风电机组接地[A].第三届中国风电后市场专题研讨会论文集.北京,2016.
[22] 吴广宁,张军,付龙海,王颢.高原多年冻土地区降低接地电阻的试验研究[J].西南交通大学学报,2005, 40(2):138-141, 162. WU Guangning, ZHANG Jun, FU Longhai, WANG Hao. Experimental investigation on reducing gounding-resistance in perennial frozen sediment areas[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 138-141, 162.

备注/Memo

备注/Memo:
收稿日期:2018-05-03作者简介:姜龙杰(1991—),男,硕士,主要研究方向为电力系统接地技术。
更新日期/Last Update: 2020-02-20