[1]杨跃光,张建刚,徐剑伟,等.基于改进EGM的800 kV输电雷电屏蔽性能优化配置研究[J].电瓷避雷器,2020,(01):71-75,81.[doi:10.16188/j.isa.1003-8337.2020.01.012]
 YANG Yueguang,ZHANG Jiangang,XU Jianwei,et al.Optimal Configuration Simulation of Influencing Factors of Lightning Shielding Performance on 800 kV Transmission Lines[J].,2020,(01):71-75,81.[doi:10.16188/j.isa.1003-8337.2020.01.012]
点击复制

基于改进EGM的±800 kV输电雷电屏蔽性能优化配置研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
71-75,81
栏目:
避雷器
出版日期:
2020-02-20

文章信息/Info

Title:
Optimal Configuration Simulation of Influencing Factors of Lightning Shielding Performance on ±800 kV Transmission Lines
作者:
杨跃光1 张建刚1 徐剑伟2 张予阳1 熊志伟2 鲁海亮2
(1.中国南方电网超高压输电公司, 广州 510663; 2.武汉大学电气工程学院, 武汉 430072)
Author(s):
YANG Yueguang1 ZHANG Jiangang1 XU Jianwei2 ZHANG Yuyang1XIONG Zhiwei2 LU Hailiang2
(1.China Southern Power Grid EHV Transmission Company, Guangzhou 510063, China;2.School of Electrical Engineering, Wuhan University, Wuhan 430072, China)
关键词:
特高压直流输电 改进电气几何法 复杂地形 绕击闪络率 优化配置
Keywords:
UHVDC improved EGM complex terrain shielding failure flashover rate optimal configuration
DOI:
10.16188/j.isa.1003-8337.2020.01.012
摘要:
特高压直流输电线路沿途地形复杂、雷电活动差异大,雷电绕击已成为其安全运行的首要威胁。建立了一种综合考虑导线工作电压、风速、杆塔高度、地面倾斜角、地线保护角等因素的改进电气几何模型,开展了杆塔地面倾斜角与输电线路雷电屏蔽影响因素间优化配置关系的研究,仿真计算了±800 kV直流输电线路雷电屏蔽失效率及绕击闪络率。计算结果表明:不同地面倾斜角下导线电压极性、杆塔高度、风速、避雷线保护角对线路雷电屏蔽性能的影响存在差异,对于保护角,倾斜角不大于15°、保护角不大于10°或者倾斜角范围在15°~30°、保护角不大于-5°时,可满足地闪密度为6.85次/km2·a时±800 kV直流输电线路绕击闪络率不超过0.197次/100 km·a的要求。
Abstract:
The terrain along the UHVDC transmission lines is complex and lightning activityvaries greatly. Lightning strikes become the primary threat to the safe operation of UHVDC power transmission lines. Based on the improved electrical geometry method, this paper studies the optimal configuration relationship between the tower ground inclination angle and the factors affecting the lightning protection of the transmission line. The lightning shielding failure rate and the flashover ratio of the ±800 kV DC transmission line are simulated and calculated. The calculation results show that the effects of voltage polarity, tower height, wind speed, and lightning protection angle on the lightning shielding performance of the line are different under different ground inclination angles. For the protection angle, the inclination angle is not greater than 15° and the protection angle is not greater than 10°. When the tilt angle is in the range of 15° to 30° and the protection angle is less than -5°, the flash lightning density of the ±800 kV DC transmission line does not exceed 0.197 times/100 km·a when the ground flash density is 6.85 times/km2·a.

参考文献/References:

[1] 李立浧,司马文霞,杨庆,冯杰.云广±800 kV特高压直流输电线路耐雷性能研究[J].电网技术,2007,31(8):1-5. LI Liying, SI MA Wenxia, YANG Qing, FENG Jie. Research on lightningwithstand performance of ±800 kV ultra HVDC power transmission line from Yunnan to Guang-dong[J]. Power System Technology, 2007, 31(8): 1-5.
[2] 舒印彪.我国特高压输电的发展与实施[J].中国电力,2005, 38(11):1-8. SHU Yinbiao. Development and execution of UHV power transmission inChina[J]. Electric Power, 2005, 38(11): 1-8.
[3] IEEE WORKING GROUP ON ESTIMATING LIGHTNING PERFORMANCE OF TRANSMISSION LINES.A Simplified Method for Estimating Lightning Performance of Transmission Lines[J].IEEE Transactions on Power Delivery,1994, 104(4):51-52.
[4] 维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术,1998, 24(02):76-79. WEI LIEXIAJIN,WU Weihan. The analysis of lightning protection for EHV and UHV transmission lines in Russia[J]. High Voltage Engineering, 1998, 24(02): 76-79.
[5] 余军,蓝磊,孙泽中,王磊,何慧雯,王羽,邓冶强.考虑地面倾角下±1 100 kV重要输电通道内邻近线路间雷电屏蔽效应仿真计算[J].电网技术,2018, 42(2):366-373. YU Jun, LAN Lei, SUN Zezhong, WANG Lei, HE Huiwen, WANG Yu, DENG Yeqiang.Simulation of lightning shielding between adjacent lines considering ground slope angle in important ±1 100 kV DC transmission channel [J]. Power System Technology, 2018, 42(2): 366-373.
[6] 何俊佳,姚帅,贺恒鑫,谢施君,董曼玲,谢耀恒,吴传奇,丁黎.复杂地形下500 kV超高压输电线路的绕击耐雷性能[J].高电压技术,2010, 36(8):1877-1883. HE Junjia, YAO Shuai, HE Hengxin, XIE Shijun, DONG Manling, XIE Yaoheng, WU Chuanji, DINGLi. Shielding failure performance of 500 kV EHVAC overhead transmission lines at complex terrain[J]. High Voltage Engineering, 2010, 36(8): 1877-1883.
[7] ARMSTRONG H R, WHITEHEAD E R. Field and analytical studies of trans-mission line shielding[J]. IEEE Transactions on Power Apparatus and Systems, 1968, 87(1): 270-281.
[8] TANIGUCHI S, OKABE S, TAKAHASHI T A. Air-gap discharge characteristics in foggy conditions relevant to lightning shielding of transmission lines[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 2409-2416.
[9] 彭谦,李军,卞鹏,康东升,单志祥.改进电气几何模型法在1 000 kV输电线路雷电绕击跳闸率计算中的应用[J].电网技术,2010, 34(9):155-159. PENG Qian, LI Jun, BIAN Peng, KANG Dongsheng, SHAN Zhixiang. Application of improved electrical geometry model in calculation of lightning shieldingfailure caused trip-out rate of 1 000 kV power transmission line[J]. Power System Technology, 2010, 34(9): 155-159.
[10]李瑞芳,吴广宁,曹晓斌,马御棠,刘平,苏杰.山区输电线路雷电绕击跳闸率的计算[J].电网技术,2010, 34(12):142-146. LI Ruifang, WU Guangning, CAO Xiaobin, MA Yutang, LIU Ping, SU Jie. Calculation of shielding failure trip-out rate for transmission lines in mountain areas[J]. Power System Technology, 2010, 34(12): 142-146.
[11]FAROUK A M. Rizk. Modeling of transmission line exposure to direct lighting strokes[J]. IEEE Trans.Power Del, 1990, 5(4): 1983-1997.
[12]贺恒鑫.超/特高压输电线路雷电屏蔽性能三维先导仿真模型研究[D].武汉:华中科技大学,2011.
[13]STANDA I, rd 1243-1997. IEEE guide for improving the lightning performance of transmission lines[S], 1997.
[14]中国电力企业联合会. 1 000 kV特高压交流输变电工程过电压和绝缘配合标准:GB/Z 24842-2009 [S].中国标准出版社,2009.
[15]IEEE WORKING GROUP ON ESTIMATING LIGHTNING PERFORMANCE OF TRANSMISSION LINES.A Simplified Method for Estimating Lightning Performance of Transmission Lines [J].IEEE Transactions on Power Delivery,1994, 104(4):51-52.
[16]交流电气装置的过电压保护和绝缘配合设计规范:GB/T 50064—2014 [S].
[17]高小刚.直流输电线路防雷保护特性研究[D].长沙:长沙理工大学,2012.
[18]国家电网公司企业标准.架空输电线路防雷导则:Q/GDW 11452-2015 [S].

备注/Memo

备注/Memo:
收稿日期:2018-05-20作者简介:杨跃光(1987—),男,硕士,工程师,主要从事超、特高压输电线路雷电防护方面的工作。
更新日期/Last Update: 2020-02-20