[1]李景丽,冯 鹏,王保娟,等.直流入地电流在交流电网中分布的研究[J].电瓷避雷器,2019,(06):96-103.[doi:10.16188/j.isa.1003-8337.2019.06.017]
 LI Jingli,FENG Peng,WANG Baojuan,et al.Research on the Distribution of DC Earth Current in AC Network[J].,2019,(06):96-103.[doi:10.16188/j.isa.1003-8337.2019.06.017]
点击复制

直流入地电流在交流电网中分布的研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
96-103
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Research on the Distribution of DC Earth Current in AC Network
作者:
李景丽1 冯 鹏1 王保娟2 栗超超1
(1.郑州大学产业技术研究院, 郑州 450001; 2.国网河南省电力公司郑州供电公司, 郑州 450007)
Author(s):
LI Jingli1 FENG Peng1 WANG Baojuan2 LI Chaochao1
(1.Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China; 2.State Grid Zhengzhou Power Supply Company, Zhengzhou 450007, China)
关键词:
交流电网 接地极 变压器 直流偏磁
Keywords:
AC network grounding electrode transformer DC bias
DOI:
10.16188/j.isa.1003-8337.2019.06.017
摘要:
直流接地极的入地电流会在地下较大的范围内形成恒定电场,经中性点进入变压器内引起的直流偏磁将影响变压器正常运行。本文提出将包括变压器路的地上电路模型与包括接地电阻、变压器地电位的地下电磁场耦合起来,计算直流电流在交流电网中分布的方法,以某直流输电工程为例,研究变电站与直流接地极距离、土壤结构、主变台数和接地电阻、线路长度等参数对进入变压器直流电流的影响。结果表明:变电站与直流接地极距离越远,主变台数增加、接地电阻增大、线路电阻增加都能减小流入变压器的直流; 深层土壤结构对地电位分布影响显著,深层土壤电阻率越大,引起直流接地极附近的电位升越大,流入变电站主变中性点的电流越大。此外,流入变压器的电流值还与变电站彼此间的电位差有关。因此,可以采取增大主变中性点接地电阻等措施来因减小流入变压器的中性点的直流电流来削弱直流偏磁现象。
Abstract:
The current of grounding electrode will cause a constantelectric field in a largearea of the underground.The DC biases of the transformers caused by the DC current through neutral points may damage the transformers.This paper presents a method for calculating the distribution of DC current in an alternating current network, including the ground circuit model of transformers and line and the underground electromagnetic field including grounding resistance and transformer ground potential.Taking a direct current transmission project as an example, the influence of parameters such as distance between substation and DC grounding electrode, soil structure, main transformer number, grounding resistance, line length and other parameters on the DC current of transformer are studied.The simulation results show thatthe farther away the substation is from the DC grounding electrode, the change in the number increased, grounding resistance increases, the line resistance increase can reduce the DC transformer into the deep influence of size; soil structure potential distribution of the significant, deep soil resistivity increases, causing potential near the DC grounding or greater current flows transformer neutral point is. In addition, the current value that flows into the transformer is also related to the potential difference between the substations.Therefore, we can increase the main transformer neutral point grounding resistance and other measures to reduce the DC currentto the neutral point of the transformer to weaken the DC bias phenomenon.

参考文献/References:

[1] 赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
[2] 王泽忠,邓涛,谭瑞娟,等.特高压变压器直流偏磁空载电流实时计算[J].高电压技术,2018,44(1):218-225. WANG Zezhong, DENG Tao, TAN Ruijuan, et al. No-load Current Real-time Calculation of DC-biased UHV Transformer[J]. High Voltage Engineering, 2018, 44(1): 218-225.
[3] 谭瑞娟.单相特高压自耦变压器直流偏磁电磁特性研究[D].北京:华北电力大学,2017.
[4] 张艳丽,王佳音,白保东,等.直流偏磁磁场对硅钢片磁致伸缩特性的影响分析[J].中国电机工程学报,2016, 36(15):4299-4307. ZHANG Yanli, WANG Jiayin, BAI Baodong, et al. Influence analysis of DC biased magnetic field on magnetostrictive characteristics of Silicon steel sheet[J]. Proceedings of the CSEE, 2016, 36(15): 4299-4307.
[5] 翁汉琍,杨国稳,相艳会,等.变压器饱和对交流电网直流电流分布的影响[J].高电压技术,2016, 42(10):3295-3300. WENG Hanli, YANG Guowen, XIANG Yanhui, et al. Effect of transformer saturation on the DC distribution of AC power system[J]. High Voltage Engineering, 2016, 42(10): 3295-3300.
[6] 陈志伟,白保东,陈德志,等.电力变压器直流偏磁现象形成机理及一种抑制措施的研究[J].电工技术学报,2015, 30(14):208-214. CHEN Zhiwei, BAI Baodong, CHEN Dezhi, et al. Research on the formation mechanism and suppression method of transformer DC bias[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 208-214.
[7] 任志超.直流系统地极电流场的分布特性及其对交流电网影响的研究[D].成都:西南交通大学,2012.
[8] 潘卓洪,张露,谭波,等.高压直流输电入地电流在交流电网分布的仿真分析[J].电力系统自动化,2011, 35(21):110-115. PAN Zhuohong, ZHANG Lu, TAN Bo, et al. Simulation and analysis of HVDC earth-return current's distribution in AC power grid[J]. Automation of Electric Power Systems, 2011, 35(21): 110-115.
[9] 曾嵘,张波,赵杰,等.HVDC地中直流对交流系统的影响及规律分析[J].高电压技术,2009, 35(3):678-682. ZENG Rong, ZHANG Bo, ZHAO Jie, et al. HVDC Influence and characteristics analysis of effect of the HVDC ground return current on AC system[J]. High Voltage Engineering, 2009, 35(3): 678-682.
[10] 王明新,张强.直流输电系统接地极电流对交流电网的影响分析[J].电网技术,2005, 29(3):9-14. WANG Mingxin, ZHANG Qiang. Analysis on influence of ground electrode current in HVDC on AC power network[J]. Power SystemTechnology, 2005, 29(3): 9-14.
[11] 杨永明,刘行谋,陈涛,等.特高压直流输电接地极附近的土壤结构对变压器直流偏磁的影响[J].电网技术,2012, 36(7):26-32. YANG Yongming, LIU Hangmou, CHEN Tao, et al. Impact ofsoil structure adjacent to ground electrodes of UHVDC power transmission lines on DC bias of power transformers[J]. Power System Technology, 2012, 36(7): 26-32.
[12] 何俊佳,叶会生,林福昌,等.土壤结构对流入变压器中性点直流电流的影响[J].中国电机工程学报,2007, 27(36):14-18. HE Junjia, YE Huisheng, LIN Fuchang, et al. Influence of soil structure on direct current flowing into neutral point of power transformer[J]. Proceedings of the CSEE, 2007, 27(36): 14-18.
[13] 周挺,胡金.降低接地极直流偏磁影响的接地极选址优化研究[J].智能电网,2017, 5(4):351-355. ZHOU Ting, HU Jin. Optimization research on HVDC electrode site selection for reducing the DC magnetic bias effect upon the power system[J]. Smart Grid, 2017, 5(4): 351-355.
[14] 阮江军,徐闻婕,丁志锋,等.基于场路直接耦合模型的交流电网直流偏磁电流分布研究[J].高电压技术,2017, 43(4):1333-1340. RUAN Jiangjun, XU Wenjie, DING Zhifeng, et al. Study of DC-bias Current Distribution in AC Power System Based on Direct Field-circuit Coupled Model[J]. High Voltage Engineering, 2017, 43(4): 1333-1340.
[15] 李瑾,王渝红,梁晓斌,等.直流接地极入地电流在交流系统中的通路构成及计算方法综述[J].四川电力技术,2017, 40(2):34-40. LI Jin, WANG Yuhong, LIANG Xiaobin, et al. Summary of the composition and calculation method of DC earth electrode current in AC system[J]. Sichuan Electric Power Technology, 2017, 40(2): 34-40.
[16] WANG Sheng, MAO Chengxiong,et al. Influence of HVDC ground electrode current on AC Transmission system and its restraining measure[C].International Conference on Power System Technology,2006,1-5.
[17] 邹国平,姚晖,何文林,等.溪洛渡—浙西±800 kV特高压直流输电工程受端电网直流偏磁治理[J].高电压技术,2016, 42(2):543-550. ZOU Guoping, YAO Hui, HE Wenlin, et al. DC bias suppression of receiving-end power grid in±800 kV Xiluodu-Zhexi UHVDC project[J]. High Voltage Engineering, 2016, 42(2): 543-550.
[18] 文习山,郭婷婷,何智强,等.直流偏磁相关问题研究综述[J].高压电器,2016, 52(6):1-8. WEN Xishan, GUO Tingting, HE Zhiqiang, et al. Review on the related problems of DC magnetic bias[J]. High Voltage Apparatus, 2016, 52(6): 1-8.
[19] 佟昕.HVDC输电引起变压器直流偏磁分析及抑制措施[D].长春:东北电力大学,2014.
[20] 邵帅.主变直流偏磁抑制技术研宄及应用[D].保定:华北电力大学,2017.
[21] 肖本旺,王渝红,欧林,等.直流偏磁抑制措施研究综述[J].高压电器,2015(10):209-216. XIAO Benwang, WANG Yuhong, OU Lin, et al. Reviews of the restraining measures of DC bias[J]. High Voltage Apparatus, 2015(10): 209-216.
[22] 于永军,杨琪,侯志远,等.天中直流工程入地电流对新疆哈密地区交流电网的影响[J].电网技术,2014, 38(8):2298-2303. YU Yongjun, YANG Qi, HOU Zhiyuan, et al. Influence of grounding current in UHVDC transmission project from tianshan to zhongzhou on Hami AC power system in Xinjiang uygur autonomous region[J]. Power System Technology, 2014, 38(8): 2298-2303.
[23] 杨娜,陈煜,潘卓洪,等.准东——皖南±1 100 kV特高压直流输电工程受端电网的直流偏磁影响预测及治理[J].电网技术,2018, 42(2):381-387. YANG Na, CHEN Yu, PAN Zhuohong, et al. Influence prediction and suppression research of DC bias in eastern Junggar-Southern Anhui±1 100 kV UHVDC Receiving-End grid[J]. Power System Technology, 2018, 42(2): 381-387.
[24] 董曼玲,姚帅,郭磊,等.天山—中州特高压直流输电工程投运后河南电网主变直流偏磁分析及抑制[J].高电压技术,2017, 43(2):611-618. DONG Manling, YAO Shuai, GUO Lei, et al. DC bias analysis and suppression of transformers in Henan power grid after Tianshan-Zhongzhou UHVDC transmission project commissioning[J]. High Voltage Engineering, 2017, 43(2): 611-618.

备注/Memo

备注/Memo:
收稿日期:2018-04-24 作者简介:李景丽(1983—),女,副教授,博士,研究领域:电磁场数值计算方法,电力系统过电压与接地技术及绝缘技术。
更新日期/Last Update: 2019-12-10