[1]柳贡强,孙 巍,刘春翔,等.冻土区域输电线路接地故障机理分析[J].电瓷避雷器,2019,(06):73-77.[doi:10.16188/j.isa.1003-8337.2019.06.013]
 LIU Gongqiang,SUN Wei,LIU Chunxiang,et al.Mechanism Analysis for Ground Fault of Transmission Lines in Permafrost Region[J].,2019,(06):73-77.[doi:10.16188/j.isa.1003-8337.2019.06.013]
点击复制

冻土区域输电线路接地故障机理分析()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
73-77
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Mechanism Analysis for Ground Fault of Transmission Lines in Permafrost Region
作者:
柳贡强1 孙 巍2 刘春翔3 刘中元2 周洪毅2 曹元成4
(1.国网黑龙江省电力有限公司, 哈尔滨 150090; 2.国网黑龙江省电力有限公司电力科学研究院, 哈尔滨 150030; 3.国网电力科学研究院武汉南瑞有限责任公司,武汉 430074; 4.华中科技大学强电磁工程与新技术国家重点实验室, 武汉 430074)
Author(s):
LIU Gongqiang1 SUN Wei2 LIU Chunxiang3 LIU Zhongyuan2 ZHOU Hongyi2 CAO Yuancheng4
(1.State Grid Heilongjiang Electric Power Co., Ltd., Harbin 150090, China; 2.Electric Power Research Institute of State Grid Heilongjiang Electric Power Co., Ltd., Harbin 150030, China; 3.Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute, Wuhan 43007, China; 4.China State Key Laboratory of Advanced Electromagnetic Engineering and Technology,Huazhong University of Science and Technology, Wuhan 430074, China)
关键词:
冻土区域 输电线路 接地故障 冻融过程 高寒 温度变化
Keywords:
permafrost region transmission line ground fault freezing and thawing process alpine region temperature variation
DOI:
10.16188/j.isa.1003-8337.2019.06.013
摘要:
为了弄清季节性冻土区域输电线路的接地故障问题,本文在调研黑龙江区域输电故障接地情况的基础上,研究了土体随含水量和冻融循环的变化情况,给出了分析多次冻融循环过程基础的极限抗拔力,进而获得了冻土区域输电线路的接地故障机理。研究结果表明:1)冻土区域线路运行年限越长,接地体故障几率越大,接地故障容易发生在焊接部分等薄弱位置; 2)冻融次数增加导致了杆塔基础极限抗拔力下降,直接引发杆塔地基上拔的现象,从而造成接地体的破坏损伤。针对冻土区域的输电线路接地故障,文中建议采用避开富冰冻土区域等手段,相关的研究结果可为冻土区域输电线路接地的运行检修提供参考。
Abstract:
In order to get the leakage current features of snow covered zinc surge oxide arrester with freeze-thaw process, based on ground fault investigation of transmission lines in permafrost region of Heilongjiang Province, the paper analyzed the change of soil caused by soil moisture and freeze-thaw cycle, and calculated ultimate pullout capacity of tower foundation of transmission lines to obtain ground fault mechanism of transmission lines in permafrost region. The results shows that ground fault probability is rising with running time of transmission lines in permafrost region, and ground fault location is easy to appear in weak position such as welding part of ground; as the frequency of freeze-thaw cycling is increasing, ultimate pullout capacity of tower foundation is decreasing, which causes the arch of foundation and damage of the ground body. Considering ground fault of transmission lines in permafrost region, it is suggested to avoid ice-rich areas of frozen soil. The results can provide the technical support for ground operation of transmission line in permafrost areas.

参考文献/References:

[1] 邓鹤鸣,李勇杰,蔡炜,等. 沙漠区域输电问题研究现状及展望[J]. 高电压技术,2017, 43(12):3850-3861. DENG Heming, LI Yongjie, CAI Hui, et al. Status and prospect on technical research of power transmission in desert areas[J]. High Voltage Engineering, 2017, 43(12): 3850-3861.
[2] 董晓强,陈瑞锋. 冻融循环作用下土体特性研究进展[J]. 太原理工大学学报,2017, 48(3):275-287. DONG Xiaoqiang, CHEN Ruifeng. Research progress of soil properties under freezing and thawing cycles[J]. Journal of Taiyuan University of Technology, 2017, 48(3): 275-287.
[3] 齐吉琳,马巍. 冻土的力学性质及研究现状[J]. 岩土力学,2010, 31(1):133-143. QI Jilin, MA Wei. State of art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics,2010, 31(1): 133-143.
[4] 刘世伟,张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土,2012, 34(1):120-129. LIU Shiwei, ZHANG Jianming. Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129.
[5] SOWA V A. Pulling capacity of concrete cast in-situ bored piles[J]. Canadian Geotechnical Journal, 1970, 61(7): 482-493.
[6] SHANKER K, BASUDHAR P K, PATRA N R. Uplift capacity of single piles:predictions and performance[J]. Geotechnical and Geological Engineering, 2007, 25(2): 151-161.
[7] DESHMUKH V B, DEWAIKAR D M, CHOUDHURY D. Computations of uplift capacity of pile anchors in cohesionless soil[J]. Acta Geotechnica, 2010, 5(2): 87-94.
[8] 郦建俊,黄茂松,木林隆,等. 分层地基中扩底桩抗拔承载力的计算方法研究[J]. 岩土力学,2008, 29(7):1997-2003. LI Jianjun, HUANG Maosong, MU Linlong, et al. Research on computation methods of upliftcapacity of enlarged base pile in layered soils[J]. Rock and Soil Mechanics, 2008, 29(7): 1997-2003.
[9] 郦建俊,黄茂松,王卫东,等. 软土地基中扩底抗拔中长桩的极限承载力分析[J]. 岩土力学,2009, 30(9):2643-2650, 2666. LI Jianjun, HUANG Maosong, WANG Weidong, et al. Analysis of uplift capacity of long enlarged-base pile in soft soil ground[J]. Rock and Soil Mechanics, 2009, 30(9): 2643-2650, 2666.
[10] 何思明,张晓曦,王东坡. 分层地基中抗拔桩破裂面的确定方法与极限抗拔承载力计算方法研究[J]. 岩土力学,2012, 33(5):1433-1437. HE Saiming, ZHANG Xiaoxi, WANG Dongpo. Study of computation methods of ultimate uplift capacity and determining position of failure surface of uplift piles in layered soil[J]. Rock and Soil Mechanics, 2012, 33(5): 1433-1437.
[11] 鲁先龙,程永锋,张宇. 输电线路原状土基础抗拔极限承载力计算[J]. 电力建设,2006, 27(10):28-32. LU Xianlong, CHENG Yongfeng, ZHANG Yu. Calculation on ultimate uplift bearing capacity of undisturbed soil foundation in transmission lines[J]. Electric Power Construction, 2006, 27(10): 28-32.
[12] 曾二贤,李隽,王开明,等. 输电塔原状土基础抗拔承载力理论计算[J]. 电网与清洁能源,2010, 26(3):45-47. ZENG Erxian, LI Juan, WANG Kaiming, et al. Theoretical calculations of uplift capacity of undisturbed soil foundation for transmission towers[J]. Advances of Power System & Hydroelectric Engineering, 2010, 26(3): 45-47.
[13] 郭在华,邢天放,吴广宁,等. 冰冻土壤中垂直接地极的接地电阻变化规律[J]. 高电压技术,2014, 40(3):698-706. GUO Zaihua, XING Tianfang, WU Guangning, et al. Grounding resistance change rule of vertical grounding electrode in frozen Soil[J]. High Voltage Engineering, 2014, 40(3): 698-706.
[14] 张宝平,何金良,康鹏,等. 冻土冲击特性的试验研究[J]. 中国电机工程学报,2008, 28(16):143-147. ZHANG Baoping, HE Jinliang, KANG Peng, et al. Experimental study on impulse characteristics of frozen soil[J]. Proceedings of the CSEE, 2008, 28(16): 143-147.
[15] 葛琪. 基于冻融界面强度损伤的季冻区土质边坡稳定性研究[D]. 长春:吉林大学,2010.
[16] 程永春,葛琪,何锋. 季冻区土质边坡滑动界面临界深度的试验研究[J]. 岩土力学,2010, 31(4):1042-1046. CHENG Yongchun, GE Qi, HE Feng. Experimental research on critical depth of slip surface of soil slope in seasonal frozen area[J]. Rock and Soil Mechanics, 2010, 31(4): 1042-1046.
[17] 电力规划设计总院. 架空输电线路基础设计技术规程:DL/T 5219—2014[S]. 北京: 中国电力出版社, 2014.
[18] 中南电力设计院. 冻土地区架空输电线路基础设计技术规程:DL∕T 5501—2015[S]. 北京: 中国电力出版社, 2015.
[19] 黑龙江省旱地建筑科学研究院. 冻土地区建筑地基基础设计规范:JGJ 118—2001[S]. 北京: 中国建筑工业出版社, 2011.

备注/Memo

备注/Memo:
收稿日期:2018-09-06 作者简介:柳贡强(1979—),男,高级工程师,研究方向为输变电工程运维技术。
更新日期/Last Update: 2019-12-10