[1]何培东,蒲丽娟,杜 斌,等.金属氧化物避雷器老化监测的新型智能算法研究[J].电瓷避雷器,2019,(06):61-66.[doi:10.16188/j.isa.1003-8337.2019.06.011]
 HE Peidong,PU Lijuan,DU Bing,et al.Research on the New Intelligent Algorithm for Aging Monitoring of Metal Oxide Arresters[J].,2019,(06):61-66.[doi:10.16188/j.isa.1003-8337.2019.06.011]
点击复制

金属氧化物避雷器老化监测的新型智能算法研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
61-66
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Research on the New Intelligent Algorithm for Aging Monitoring of Metal Oxide Arresters
作者:
何培东蒲丽娟杜 斌杨丽莎王晨丞
(国网四川省电力公司计量中心, 成都610000)
Author(s):
HE Peidong PU Lijuan DU Bing YANG Lisha WANG Chencheng
(Metering Center of State Grid Sichuan Electric Power Company, Chengdu 610000, China)
关键词:
金属氧化物避雷器 泄漏电流 在线监测 老化 智能算法
Keywords:
metallic oxide arrester leakage current on-line monitoring aging intelligent algorithm
DOI:
10.16188/j.isa.1003-8337.2019.06.011
摘要:
金属氧化物避雷器老化状态监测不可避免地受到谐波电压和电压波动等扰动的影响,而传统方法存在抗干扰能力不足的问题,本文提出了适用于老化监测的一种新型智能算法,利用该算法来求解反映金属氧化物避雷器老化状态的k、α、C系数,从而实现对金属氧化物避雷器的老化状态监测。通过高压试验和包含谐波电压、电压波动等不同电压条件下的泄漏电流仿真对比试验,对本文方法在金属氧化物避雷器老化监测中的有效性和优越性进行了验证。本文方法具有很好的抗干扰性和稳定性,可为金属氧化物避雷器老化状态的监测评估提供有效的参考和技术指导。
Abstract:
The aging condition monitoring of metal oxide arrester is inevitably affected by harmonic voltage and voltage fluctuation, however the traditional method has the problem of insufficient anti-interference ability. This paper presents a new intelligent algorithm for the aging monitoring. The k, α, and C coefficients reflecting the aging state of the metal oxide arrester are solved with the algorithm, so the aging condition of metal oxide arrester can be monitored. Through high voltage test and simulation leakage current comparison test including harmonic voltage, voltage fluctuation and other different voltage conditions, the effectiveness and superiority of this method in the aging monitoring of metal oxide arresters are verified. This method has good anti-interference and stability, and it can provide effective reference and technical guidance for monitoring and evaluating the aging state of metal oxide arresters.

参考文献/References:

[1] KHODSUZ M, MIRZAIE M, SEYYEDBARZEGAR S. Metal oxide surge arrester condition monitoring based on analysis of leakage current components[J]. International Journal of Electrical Power & Energy Systems, 2015, 66: 188-193.
[2] 唐明良,李佑光,曹洪亮.综合消噪算法在金属氧化物避雷器在线监测中的应用[J].电瓷避雷器,2016(2):45-49. TANG Mingliang, LI Youguang, CAO Hongliang. Application of comprehensive De-Noising algorithm to On-Line monitoring of MOA[J]. Insulators and Surge Arresters, 2016(2): 45-49.
[3] 曹洪亮,杨仲江,任婧,等.金属氧化物避雷器在线监测指标研究[J].中国电力,2015, 48(8):80-85. CAO Hongliang, YANG Zhongjiang, REN Jing, et al. Study on on-line monitoring index of MOA[J]. Electric Power, 2015, 48(8): 80-85.
[4] 杨仲江,曹洪亮,李鹏飞,等.基于遗传算法的金属氧化物避雷器在线监测[J].高电压技术,2015, 41(9):3104-3109. YANG Zhongjiang, CAO Hongliang, LI Pengfei, et al. On-line monitoring of metal oxide arrester using genetic algorithm[J]. High Voltage Engineering, 2015, 41(9): 3104-3109.
[5] 左迎芝,曹洪亮,韩通,等.基于粒子群算法的金属氧化物避雷器老化监测研究[J].高压电器,2016(11):113-118. ZUO Yingzhi, CAO Hongliang, HAN Tong, et al.Particle swarm optimization based aging monitoring of metal oxide arresters[J]. High Voltage Apparatus, 2016(11): 113-118.
[6] 罗彩建.考虑谐波电压影响的金属氧化物避雷器在线监测算法研究[J].电瓷避雷器,2016(3):53-57. LUO Caijian. Research on on-line monitoring algorithm of metal oxide arrester considering the influence of harmonic voltage[J]. Insulators and Surge Arresters, 2016(3): 53-57.
[7] ZEINODDINI-MEYMAND H, VAHIDI B, NAGHIZADEH R A, et al. Optimal surge arrester parameter estimation using a PSO-based multiobjective approach[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1758-1769.
[8] ABDELHAFID B. Parameter identification of ZnO surge arrester models based on genetic algorithms[J]. Electric Power Systems Research, 2008, 78(7): 1204-1209.
[9] 陈志霞,郭凤霞,周积强,等.模态相关法在MOA泄漏电流去噪中的应用[J].电瓷避雷器,2015(6):97-102. CHEN Zhixia, GUO Fengxia, ZHOU Jiqiang, et al. Application of mode relevance in the de-noising of the leak current of MOA[J]. Insulators and Surge Arresters, 2015(6): 97-102.
[10] NAFAR M, GHAREHPETIAN G B, NIKNAM T. A new parameter estimation algorithm for metal oxide surge arrester[J]. Electric Power Components & Systems, 2011, 39(7): 696-712.
[11] HOOSHMAND R A, AMOOSHAHI H, PARASTEGARI M. A hybrid intelligent algorithm based short-term load forecasting approach[J]. International Journal of Electrical Power & Energy Systems, 2013, 45(1): 313-324.
[12] 赵冬一,胡淑慧,王兰义,等.智能变电站用金属氧化物避雷器在线监测技术的研究发展[J].电瓷避雷器,2013(5):66-72. ZHAO Dongyi, HU Shuhui, WANG Lanyi, et al. Research and development of on-line monitoring technology of metal oxide surge arresters for smart substation[J]. Insulators and Surge Arresters, 2013(5): 66-72.
[13] 郭良峰,杜林,魏钢,等.在线监测获取的电力系统过电压波形分析[J].高压电器,2010, 46(6):64-68. GUO Liangfeng, DU Lin, WEI Gang, et al. Analysis of over-voltage in power system based on on-line monitoring device[J]. High Voltage Apparatus, 2010, 46(6): 64-68.
[14] 孔繁钢,刘强,王冀星,等.基于改进BP神经网络算法的岸电电源智能输出控制的研究 [J]. 电网与清洁能源,2017,33(2):64-67. KONG Fangang, LIU Qiang, WANG Jixing, et al.Intelligent output control of shore power supply based on improved bp neural network algorithm [J]. Power System and Clean Energy,2017,33(2):64-67.
[15] CHRISTODOULOU C A, GONOS I F, STATHOPULOS I A. Estimation of the parameters of metal oxide gapless surge arrester equivalent circuit models using genetic algorithm[J]. Electric Power Systems Research, 2011, 81(10): 1881-1886.
[16] SAXENA D, BHAUMIK S, SINGH S N. Identification of multiple harmonic sources in power system using optimally placed voltage measurement devices[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2483-2492.
[17] SUN Dong, GAO Qingwei, LU Yixiang, et al. A sparse representation-based algorithm for the voltage fluctuation detection of a power system[J]. Digital Signal Processing, 2016, 48: 259-268.

备注/Memo

备注/Memo:
收稿日期:2019-06-05 作者简介:何培东(1975—),男,硕士,教授级高级工程师,主要研究方向为高级量测体系研究等。
更新日期/Last Update: 2019-12-10