[1]刘鸣亚,谭 波,张康伟,等.土壤特性对双圆环直流接地极跨步电压分布的影响[J].电瓷避雷器,2019,(06):55-60.[doi:10.16188/j.isa.1003-8337.2019.06.010]
 LIU Mingya,TAN Bo,ZHANG Kangwei,et al.Influnce of Soil Properties on Step Voltage Distribution of Double Ring DC Grounding Pole[J].,2019,(06):55-60.[doi:10.16188/j.isa.1003-8337.2019.06.010]
点击复制

土壤特性对双圆环直流接地极跨步电压分布的影响()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
55-60
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Influnce of Soil Properties on Step Voltage Distribution of Double Ring DC Grounding Pole
作者:
刘鸣亚123 谭 波2 张康伟123 刘帮虎123 童雪芳2 董晓辉2 邓长征13 王湘汉2
(1.三峡大学电气与新能源学院,湖北 宜昌 443002; 2.中国电力科学研究院有限公司武汉分院,武汉 430074; 3.三峡大学新能源微电网湖北省协同创新中心,湖北 宜昌 443002)
Author(s):
LIU Mingya123TAN Bo2ZHANG Kangwei123LIU Banghu123TONG Xuefang2DONG Xiaohui2DENG Changzheng13WANG Xianghan2
(1.College of Electricity and New Energy,Three Gorges University,Yichang 443002, China; 2.Wuhan Branch of China Electric Power Research Institute,Wuhan 430074, China; 3.Hubei Cooperative Innovation Center for New Energy Microgrid,Three Gorges University,Yichang 443002, China)
关键词:
直流接地极 土壤特性 跨步电压
Keywords:
DC grounding electrode soil property step voltage
DOI:
10.16188/j.isa.1003-8337.2019.06.010
摘要:
为研究土壤特性对特高压直流接地极跨步电压分布的影响,采用CDEGS软件建立了双圆环直流接地极仿真模型,对比分析了不同土壤特性下双圆环直流接地极上方跨步电压分布规律。计算结果表明:在均匀土壤中,双圆环直流接地极上方跨步电压随着土壤电阻率的增大而升高; 在水平双层土壤中,表层土壤电阻率的变化对双圆环直流接地极上方跨步电压分布影响较为显著,当表层土壤超过一定厚度后,表层土壤厚度的变化对双圆环直流接地极上方跨步电压影响较小。
Abstract:
In order to study the influence of soil characteristics on the step voltage distribution of UHVDC grounding poles, a simulation model of double-ring DC grounding poles was established by using CDEGS software. The step voltage distribution over double-ring DC grounding poles under different soil characteristics was compared and analyzed. The results show that in uniform soil, the step voltage above the double-ring DC grounding electrode increases with the increase of soil resistivity; in horizontal double-layer soil, the change of surface soil resistivity has a significant impact on the step voltage distribution above the double-ring DC grounding electrode. When the surface soil exceeds a certain thickness, The change of surface soil thickness has little effect on the step voltage above the double-ring DC grounding pole.

参考文献/References:

[1] 文习山,刘晨蕾,李伟,等.考虑深层大地电阻率的电网广域直流电流分布数值计算[J].高电压技术,2017, 43(7):2331-2339. WEN Xishan, LIU Chenlei, LI Wei, et al. Wide-area DC current distribution numerical calculation considering deep earthresistivity[J]. High Voltage Engineering, 2017, 43(7): 2331-2339.
[2] 黄义隆,张波,国建宝,等.改善直流电流地中分布的接地极互联技术研究[J].电网技术,2017, 41(4):1338-1344. HUANG Yilong, ZHANG Bo, GUO Jianbao, et al. Research on groundingpole interconnection technology for improving distribution of DC current ground[J]. Power System Technology, 2017, 41(4): 1338-1344.
[3] 饶宏,张东辉,赵晓斌,等.特高压直流输电的实践和分析[J].高电压技术,2015, 41(8):2481-2488. RAO Hong, ZHANG Donghui, ZHAO Xiaobin, et al. Practice and analyses of UHVDC powertransmission[J]. High Voltage Engineering, 2015, 41(8): 2481-2488.
[4] 全江涛,谢志成,陈科基,等.特/超高压直流输电系统单极运行下变压器中性点直流电流分布规律仿真分析[J].高电压技术,2015, 41(3):787-793. QUAN Jiangtao, XIE Zhicheng, CHEN Keji, et al.UHVDC transmission system under unipolar operation of transformer neutral DC current distribution simulation analysis[J]. High Voltage Engineering, 2015, 41(3): 787-793.
[5] 张富春,郭婷,黎晓辰,等.±800 kV与±500 kV换流站共用接地极时入地电流对极址附近电位分布的影响[J].电力建设,2014, 35(7):115-120. ZHANG Fuchun, GUO Ting, LI Xiaochen, et al. ±800 kV and ±500 kV commutation stations share the ground current influence on the potential distribution near the pole address[J]. Electric Power Construction, 2014, 35(7): 115-120.
[6] 郭剑.直流接地极对电气化铁路的电磁影响[J].高电压技术,2013, 39(1):241-250. GUO Jian. Electromagnetic effect of DC grounding electrode on electrified railway[J]. High Voltage Engineering, 2013, 39(1): 241-250.
[7] 杨永明,刘行谋,陈涛,等.特高压直流输电接地极附近的土壤结构对变压器直流偏磁的影响[J].电网技术,2012, 36(7):26-32. YANG Yongming, LIU Hangmou, CHEN Tao, et al. The influence of soil structure near the grounding poles of UHVDC transmission on DC bias oftransformers[J]. Power System Technology, 2012, 36(7): 26-32.
[8] 任志超.直流系统接地极电流场的分布特性及其对交流电网影响的研究[D].成都:西南交通大学,2012.
[9] 马俊杰.考虑大地构造的直流输电接地极电位分布[D].北京:华北电力大学,2012.
[10] 王彪,王渝红,丁理杰,等.高压直流输电接地电极及相关问题综述[J].电力系统及其自动化学报,2012, 24(1):66-72. WANG Biao, WANG Yuhong, DING Lijie, et al. Summary of HVDC grounding electrode and relatedissues[J]. Proceedings of the Chinese Society of Universities, 2012, 24(1): 66-72.
[11] 刘连光,马成廉.基于有限元方法的直流输电接地极多层土壤地电位分布计算[J].电力系统保护与控制,2015, 43(18):1-5. LIU Lianguang, MA Chenglian. Calculation of multi-layer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection and Control, 2015, 43(18): 1-5.
[12] 陈伟,吴训松,曹斌,等.高压直流接地极对地表电位和跨步电压分布影响研究[J].电力学报,2019, 34(1):46-52. CHEN Wei, WU Xunsong, CAO Bin, et al. Study on the influence of HVDC grounding electrode on the distribution of surface potential and step voltage[J]. Journal of Electric Power, 2019, 34(1): 46-52.
[13] 何金良,尹晗,张晓,等.地中敷设绝缘层降低直流接地极跨步电压的方法研究[J].高电压技术,2014, 40(7):1940-1947. HE Jinliang, YIN Han, ZHANG Xiao, et al. Method of reducing DC grounding electrode step voltage based on underground insulatinglayers[J]. High Voltage Engineering, 2014, 40(7): 1940-1947.
[14] 张晓,尹晗,何金良,等.以降低跨步电压为目标的直流多环接地极电流配比的优化[J].高电压技术,2012, 38(5):1217-1224. ZHANG Xiao, YIN Han, HE Jinliang, et al. The optimization of DC multi-loop grounding electrode current ratio for reducing stepvoltage[J]. High Voltage Engineering, 2012, 38(5): 1217-1224.
[15] 郭剑,陆家榆.直流接地极结合均流系统的计算模型与求解[J].中国电机工程学报,2008(19):1-6. GUO Jian, LU Jiayu. The calculation model and solution of DC groundingpole combined current sharing system[J]. Proceedings of the CSEE, 2008(19): 1-6.

备注/Memo

备注/Memo:
收稿日期:2019-05-31 作者简介:刘鸣亚(1995—),男,在读硕士,主要研究方向为电力系统接地技术。 基金项目:国家电网公司2017年科技指南项目(编号:GY71-17-028)“加装均流电阻限制特高压直流接地极跨步电压的技术及应用研究”。
更新日期/Last Update: 2019-12-10