[1]郭贝贝,齐山成,赵 斌.融合小波和形态学的避雷器在线监测方法研究[J].电瓷避雷器,2019,(06):43-48,54.[doi:10.16188/j.isa.1003-8337.2019.06.008]
 GUO Beibei,QI Shancheng,ZHAO Bin.Research on the On-Line Monitoring Method of Surge Arrester Based on Wavelet and Morphology[J].,2019,(06):43-48,54.[doi:10.16188/j.isa.1003-8337.2019.06.008]
点击复制

融合小波和形态学的避雷器在线监测方法研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
43-48,54
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Research on the On-Line Monitoring Method of Surge Arrester Based on Wavelet and Morphology
作者:
郭贝贝 齐山成 赵 斌
(河南工学院,河南 新乡453003)
Author(s):
GUO Beibei QI Shancheng ZHAO Bin
(Henan Institute of Technology, Xinxiang 453003, China)
关键词:
避雷器 泄漏电流 在线监测 小波变换 数学形态学
Keywords:
surge arrester leakage current on-line monitoring wavelet transform mathematical morphology
DOI:
10.16188/j.isa.1003-8337.2019.06.008
摘要:
泄漏电流是对避雷器进行在线监测及运行状态评估的重要方法,但泄漏电流信号易受外界噪声干扰,而传统去噪方法存在去噪效果不理想的问题。本文提出了一种融合小波阈值去噪和形态学去噪的新型自适应去噪方法,该方法利用了小波阈值法在去除低幅值噪声和形态学法在去除高幅值噪声上的不同独特优势,并采用最速下降法对小波法的阈值和形态学法的权系数进行自适应优化确定。通过避雷器泄漏电流仿真信号和现场实测信号的去噪对比试验,结果表明:本文小波和形态学相融合的去噪方法具有很好的优越性和稳定性,可为避雷器泄漏电流信号处理及其在线监测提供有效的技术参考和指导。
Abstract:
Leakage current is an important method for on-line monitoring and running state evaluation of the surge arrester, but the leakage current signal is easily disturbed by external noise, and the effect of traditional denoising method is not very good. In this paper, a new adaptive denoising method combining wavelet threshold denoising with morphological denoising is proposed, this method utilizes the different unique advantages of wavelet threshold method in removing low amplitude noise and morphological method in removing high amplitude noise, the threshold value of wavelet method and the weight coefficient of morphological method were determined by using the steepest descent method. Through the de-noising contrast test of the simulated leakage current signal and the field measured signal of the arrester, the results show that the denoising method based on wavelet and morphology has good advantages and stability, and it can provide effective technical reference and guidance for lightning arrester leakage current signal processing and on-line monitoring.

参考文献/References:

[1] KHODSUZ M, MIRZAIE M, SEYYEDBARZEGAR S. Metal oxide surge arrester condition monitoring based on analysis of leakage current components[J]. International Journal of Electrical Power & Energy Systems, 2015, 66: 188-193.
[2] 杨仲江,曹洪亮,李鹏飞,等.基于遗传算法的金属氧化物避雷器在线监测[J].高电压技术,2015, 41(9):3104-3109. YANG Zhongjiang, CAO Hongliang, LI Pengfei, et al. On-line monitoring of metal oxide arrester using genetic algorithm[J]. High Voltage Engineering, 2015, 41(9): 3104-3109.
[3] 董莉娜,胡可,王微波,等.小波消噪在10 kV金属氧化物避雷器在线检测中的应用[J].高电压技术,2014, 40(3):891-896. DONG Lina, HU Ke, WANG Weibo, et al.Application of wavelet de-noise in on-line detection of 10 kV metal oxide arresters[J]. High Voltage Engineering, 2014, 40(3): 891-896.
[4] 蔡晓波,石佳,陈小毓.基于数学形态学的金属氧化物避雷器泄漏电流在线检测方法[J].高压电器,2010, 46(1):99-102. CAI Xiaobo, DAN Jia, CHEN Xiaoyu. A on-line measurement method of leakage current of metal-oxide surge arresters based on mathematical morphology[J]. High Voltage Apparatus, 2010, 46(1): 99-102.
[5] 赵腾,姚毅,周芯竹.基于EEMD阈值的MOA避雷器泄漏电流去噪的研究[J].科学技术与工程,2014, 14(31):231-236. ZHAO Teng, YAO Yi, ZHOU Xinzhu. Research onde-noising of moa leakage current based on EEMD threshold[J]. Science Technology and Engineering, 2014, 14(31): 231-236.
[6] OSKOOI B, JULAYUSEFI M, GOUDARZI A. GPR noise reduction based on wavelet thresholdings[J]. Arabian Journal of Geosciences, 2015, 8(5): 2937-2951.
[7] 张臣国.小波分析在信号降噪中的应用研究[D].成都:电子科技大学,2012.
[8] 许学勤,巩玺,刘生春,等.广义形态滤波在MOA在线监测数据处理中的应用[J].电瓷避雷器,2009(3):34-38. XU Xueqin, GONG Xi, LIU Shengchun, et al. Application research of generalized morphological filter for MOA in processing online monitoring data[J]. Insulators and Surge Arresters, 2009(3): 34-38.
[9] ASHTIANI M B, SHAHRTASH S M. Feature-oriented de-noising of partial discharge signals employing mathematical morphology filters[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(6): 2128-2136.
[10] ZHANG Qieshi, KAMATA S I, AHRARY A. Interscale stein's unbiased risk estimate and intrascale feature patches distance constraint for image denoising[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2010(8): 1434-1441.
[11] 金涛,刘对.基于广义形态滤波与改进矩阵束的电力系统低频振荡模态辨识[J].电工技术学报,2017, 32(6): 3-13. JIN Tao, LIU Dui. Power system low frequency oscillation identification based on the generalized morphological method and improved matrix pencil algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 3-13.
[12] 陈志霞, 郭凤霞, 周积强,等. 模态相关法在MOA泄漏电流去噪中的应用[J]. 电瓷避雷器, 2015(6):97-102. CHEN Zhixia, GUO Fengxia, ZHOU Jiqiang, et al. Application of mode relevance in the de-noising of the leak current of MOA[J]. Insulators and Surge Arresters, 2015):97-102.
[13] JIANG X, ZHU Y, HUANG J. Insulator leakage currents denoising using EMD and domain-transform filtering[C]// Second International Conference on Electric Information and Control Engineering. IEEE Computer Society, 2012:823-826.

备注/Memo

备注/Memo:
收稿日期:2019-04-12 作者简介:郭贝贝(1982—),男,讲师,主要研究方向为电气工程及其自动化技术。 基金项目:河南省高等学校青年骨干教师培养计划(编号:2017GGJS170)。
更新日期/Last Update: 2019-12-10