[1]王鹏宇,鲁志伟,王永利,等.多回输电线路绕击特性的三维分析方法[J].电瓷避雷器,2019,(06):37-42.[doi:10.16188/j.isa.1003-8337.2019.06.007]
 WANG Pengyu,LU Zhiwei,WANG Yongli,et al.Three-Dimensional Analysis Method for Shielding Failure Characteristics of Multi Circuit Transmission Lines[J].,2019,(06):37-42.[doi:10.16188/j.isa.1003-8337.2019.06.007]
点击复制

多回输电线路绕击特性的三维分析方法()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
37-42
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Three-Dimensional Analysis Method for Shielding Failure Characteristics of Multi Circuit Transmission Lines
作者:
王鹏宇1 鲁志伟2 王永利3 杨 昶3 元乙贺2
(1.国网长春供电公司, 长春 130000; 2.东北电力大学电气工程学院, 吉林 吉林 132012; 3.国网吉林省电力有限公司吉林供电公司, 吉林 吉林 132012)
Author(s):
WANG Pengyu1 LU Zhiwei2 WANG Yongli3 YANG Chang3 YUAN Yihe2
(1.State Grid changchun Power Supply Company, Changchun 130000, China; 2.Electrical Engineering College Northeast Electric Power University, Jilin 132012, China; 3.State Grid Jilin Electric Power Company Limited Jilin Electric Power Company, Jilin 132012, China)
关键词:
绕击跳闸率 三维电气几何模型 平均高度 多回输电线
Keywords:
shielding failure trip-out rate three-dimensional electro-geometric model average height multi circuit transmission line
DOI:
10.16188/j.isa.1003-8337.2019.06.007
摘要:
同塔多回线路杆塔所处地形复杂,评定线路绕击耐雷水平较为困难。本文引进三维电气几何模型,与传统的EGM相比,避免了由各个截面绕击跳闸率的等效所带来的误差。将输电线路的裸露弧面进行了三维延伸扩展,计算了绕击跳闸率沿着档距内线路每一段与杆塔间长度的变化,通过沿着档距方向进行积分得出最终的绕击跳闸率,该方法也表明:线路不同位置绕击跳闸率差别很大,线路总绕击跳闸率根本不能反应实际情况。最后,通过计算分析220 kV输电线路和500/220 kV混合四回线路,证实了方法的正确性和实用性,在实际应用中具有借鉴意义。
Abstract:
Multi circuit line of the same tower usually located in complex terrain, to evaluate lightning shielding failure proof level is difficult. A three-dimensional electrical geometric model is introduced in this paper. Compared with the traditional EGM, this method avoids the error caused by the equivalent of the tripping rate of each cross section. The exposed arc surface of the transmission line is three dimensional extended, and the change of the length between each section of the line and the tower is calculated, and the final trip rate is obtained by integrating the distance along. The method also shows that the rate of trip in different locations is very different, and the total trip rate of the line cannot reflect the actual situation at all. Finally, through the calculation and analysis of 220 kV transmission line and 500/220 kV hybrid four-circuit line, the correctness and practicability of the method is verified, which has reference significance in practical application.

参考文献/References:

[1] 何金良, 赵杰, NAYEL M, 等. 导线电压对电气几何模型的雷电击距的影响[J]. 南方电网技术, 2007, 1(1):14-19. HE Jinliang, ZHAO Jie, NAYEL M, et al. Influence of conductor voltage on the striking distance of electrogeometric model[J]. Southern Power System Technology, 2007, 1(1):14-19.
[2] 李晓岚, 尹小根, 余仁山, 等. 基于改进电气几何模型的绕击跳闸率的计算[J]. 高电压技术, 2006, 32(3):42-44. LI Xiaolan, YIN Xiaogen, YU Renshan, et al. Calculation of shielding failure flashover rate for transmission line based on revised EGM[J]. High Voltage Engineering, 2006, 32(3):42-44.
[3] 吴凡, 鲁志伟. 220 kV同塔双回线路雷击双回同跳防雷改造[J]. 东北电力大学学报, 2015, 35(3):6-11. WU Fan, LU Zhiwei. 220 kV double back line lightning double back and same jump for lightning protection[J]. Journal of Northeast Dianli University, 2015, 35(3):6-11.
[4] 许颖, 徐士珩. 交流电力系统过电压防护及绝缘配合[M]. 北京:中国电力出版社, 2006.
[5] 维列夏金, 吴维韩. 俄罗斯超高压和特高压输电线路防雷运行经验分析[J]. 高电压技术, 1998, 24(2):76-79. Vereshchagin, WU Weihan. The analysis of lightning protection for EHV and UHV transmission lines in Russia[J]. High Voltage Engineering, 1998, 24(2):76-79.
[6] 彭谦, 李军, 卞鹏, 等. 改进电气几何模型法在1 000 kV输电线路雷击绕击跳闸率计算中的应用[J]. 电网技术, 2010, 34(9):155-159. PENG Qian, LI Jun, BIAN Peng, et al. Application of improved electrical geometry model in calculation of lightning shielding failure caused trip-out rate of 1 000 kV power transmission line[J]. Power System Technology, 2010, 34(9):155-159.
[7] 王巨丰, 刘赟, 黎彬, 等. 基于向量电气几何模型的输电线路绕击耐雷性能的研究[J].电网技术, 2008, 32(2):240-244. WANG Jufeng, LIU Yun, LI Bin, et al. Research on shielding failure flashover rate for transmission line based on vector electric geometry model[J]. Power System Technology, 2008, 32(2):240-244.
[8] ARMSTRONG H R. Whitehead ER.field and analytical studies of transmission line shielding[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(5):617-625.
[9] BROWN G W. Lightning performance shielding failures simplified[J]. IEEE Transactions on Power Apparatus and Systems, 1978, 97(1):33-38.
[10] 李博, 鲁志伟. 基于三维电气几何模型输电线路绕击跳闸率的计算[J]. 东北电力大学学报, 2017, 37(4):39-44. LI Bo, LU Zhiwei. Calculation of shielding failure flash-over rate of transmission line based on three-dimensional electro-geometric model[J]. Journal of Northeast Electric Power University, 2017, 37(4):39-44.
[11] 王俊凯, 何晓, 徐航, 等. 基于EGM模型的三维防雷评估与实例分析[J]. 电瓷避雷器, 2014,(2):108-113. WANG Junkai, HE Xiao, XU Hang, et al. Assessment and instance analysis of Three-Dimensional lightning protection based on EGM model[J]. Insulators and Surge Arresters, 2014,(2):108-113.
[12] 李瑞芳, 吴广宁, 曹晓斌, 等. 输电线路雷电绕击率的三维计算方法[J]. 电工技术学报, 2009, 24(10):134-138. LI Ruifang, WU Guangning, CAO Xiaobin, et al. Three-dimensional calculation method on shielding failure rate of transmission lines[J]. Transactions of China Electrotechnical Society, 2009, 24(10):134-138.
[13] 李长旭, 常树生, 孙福东, 等. 风偏角与杆塔结构对500 kV同杆双回线路绕击耐雷性能的影响[J]. 东北电力大学学报, 2008, 28(1):76-80. LI Changxu, CHANG Shusheng, SUN Fudong, et al. The effects ofwind deviation angle and tower structure on the lightning protection performance of shielding failure for 500 kV double-circuit transmission line[J]. Journal of Northeast Electric Power University, 2008, 28(1):76-80.
[14] 张瑚, 黄欲成, 何妍, 等. 计及风偏和地面倾角的线路绕击耐雷性能研究[J]. 电力科学与工程, 2010, 26(9):36-39. ZHANG Hu, HUANG Yucheng, HE Yan, et al. Study on lightning protection performance of shielding failure for transmission line with improved EGM[J]. Electric Power Science and Engineering, 2010, 26(9):36-39.
[15] 王声学, 吴广宁, 范建斌, 等. 500 kV输电线路悬垂绝缘子串风偏闪络的研究[J]. 电网技术, 2008, 32(9):65-69. WANG Shengxue, WU Guangning, FAN Jianbin, et al. Study on flashover of suspension insulator string caused by windage yaw in 500 kV transmission lines[J]. Power System Technology, 2008, 32(9):65-69.
[16] 司马文霞, 郑皓元, 杨庆, 等. 复杂地形下输电线路绕击跳闸次数3维计算方法[J]. 高电压技术, 2014, 40(3):662-668. SIMA Wenxia, ZHENG Haoyuan, YANG Qing, et al. Three-dimensional method of calculating shielding failure flashover times of transmission line in complex terrain area[J]. High Voltage Engineering, 2014, 40(3):662-668.
[17] 吴广宁, 熊万亮, 曹晓斌, 等. 输电线路绕击特性的三维分析方法[J]. 高电压技术, 2013, 39(2):374-382. WU Guangning, XIONG Wanliang, CAO Xiaobin, et al. Three-dimensional analysis method of shielding failure characteristics of transmission lines[J]. High Voltage Engineering, 2013, 39(2):374-382.
[18] 廖民传, 汪晶毅, 李志泰, 等. 混压同塔多回输电线路绕击建模与评估[J]. 电网技术, 2013, 39(9):2547-2552. LIAO Minchuan, WANG Jingyi, LI Zhitai, et al. Modeling and evaluation of shielding failure for Multi-Circuit transmission lines in different voltage levels on the same Tower[J]. Power System Technology, 2013, 39(9):2547-2552.

备注/Memo

备注/Memo:
收稿日期:2018-03-28 作者简介:王鹏宇(1994—),男,硕士,主要研究方向为电力系统高电压与绝缘技术。 基金项目:国网吉林省电力有限公司科技项目(编号:522312170008)。
更新日期/Last Update: 2019-12-10