[1]马 超,刘渝根,梁 科,等.基于CDEGS降阻材料对接地电阻影响的仿真[J].电瓷避雷器,2019,(06):13-19.[doi:10.16188/j.isa.1003-8337.2019.06.003]
 MA Chao,LIU Yugen,LIANG Ke,et al.Simulation of the Effect of Resistance-Reducing Material on Grounding Resistance Based on CDEGS[J].,2019,(06):13-19.[doi:10.16188/j.isa.1003-8337.2019.06.003]
点击复制

基于CDEGS降阻材料对接地电阻影响的仿真()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
13-19
栏目:
避雷器
出版日期:
2019-12-10

文章信息/Info

Title:
Simulation of the Effect of Resistance-Reducing Material on Grounding Resistance Based on CDEGS
作者:
马 超1 刘渝根2 梁 科1 彭子耀1 罗梦圆2
(1.国网重庆市电力公司 长寿供电分公司, 重庆 401200; 2.重庆大学 输配电装备及系统安全与新技术国家重点实验室, 重庆 400044)
Author(s):
MA Chao1 LIU Yugen2 LIANG Ke1 PENG Ziyao1 LUO Mengyuan2
(1.Changshou Power Supply Company, Chongqing Electric Power Company, Chongqing 401200, China; 2.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)
关键词:
CDEGS 降阻材料 杆塔接地电阻 仿真研究
Keywords:
CDEGS resistance reduction material tower grounding resistance simulation study
DOI:
10.16188/j.isa.1003-8337.2019.06.003
摘要:
为了提高杆塔接地装置的降阻效率,通过电磁分析软件CDEGS建模,研究了降阻材料敷设厚度和敷设位置对接地电阻的影响。结果表明:随着降阻材料敷设厚度的增加,一维直线型接地装置的工频接地电阻和冲击接地电阻的降低呈现出先快后慢的趋势,并且土壤电阻率越高,接地电阻降幅越明显。至于敷设位置,对于放射型接地极,土壤电阻率为100~2 000 Ω·m时,对射线敷设就可以达到全部敷设的降阻效果。对于复合型接地极,仅射线敷设和仅垂直接地极敷设降阻效果相同。土壤电阻率为2 000 Ω·m时,射线、垂直接地极均敷设和全部敷设的降阻效果相差不大。仿真结果证实了降阻材料的有效性,并为其现场施工提供了一定的参考建议。
Abstract:
In order to improve the resistance-reducing efficiency of tower grounding device, the influence of the thickness and position of the laying materials on the grounding resistance are studied by the electromagnetic analysis software CDEGS modeling. The results show that with the increase of laying thickness of resistance-reducing material, power frequency grounding resistance and impulse grounding resistance of one-dimensional linear grounding device decrease rapidly first and slowly then. Moreover, the higher the soil resistivity is, the more obviously grounding resistances decrease. As for the laying position, when the soil resistivity varies 100 Ω·m between 2 000 Ω·m, to radial grounding electrode, the effect of whole grounding electrode laying can be achieved by only the radiant ones laying. To composite grounding electrodes, the effect of reducing resistance is the same between the laying of radiant only and vertical grounding electrodes only. When the soil resistivity is 2 000 Ω·m, there is little difference in the effect of reducing resistance among the radiant laying, the vertical laying and the whole grounding electrode laying. The simulation results confirm the effectiveness of resistance-reducing materials, and provide some reference for field construction.

参考文献/References:

[1] 电力工业部科学技术司. 交流电气装置的过电压保护和绝缘配合: DL/T 620—1997[S]. 北京: 中国电力出版社, 1997.
[2] 张波, 何金良, 曾嵘. 电力系统接地技术现状及展望[J]. 高电压技术, 2015, 41(08): 2569-2582. ZHANG Bo, HE Jinliang, ZENG Rong. State of art and prospect of grounding technology in power system[J]. High Voltage Engineering, 2015, 41(08): 2569-2582.
[3] 陈先禄, 刘渝根, 黄勇. 接地[M]. 重庆: 重庆大学出版社, 2002.
[4] 文建鹏. 架空输电线路防雷与接地技术研究[J]. 技术与市场, 2018, 25(09): 145-146. WEN Jianpeng. Research on lightning protection and grounding technology of overhead transmission lines[J]. Technology and Market, 2018, 25(09): 145-146.
[5] 叶伟. 送电线路杆塔接地系统的研究[D]. 北京:华北电力大学(北京), 2016.
[6] 曾嵘, 何金良, 张波, 等. 电力系统接地技术研究新进展[J]. 陕西电力, 2007(2): 1-5. ZENG Rong, HE Jinliang, ZHANG Bo, et al. Progress of study on grounding technology of modern power system[J]. Shaanxi Electric Power, 2007(2): 1-5.
[7] 王海生, 曹建强, 刘文恒, 等. 针对直击雷与感应雷的输电线路杆塔冲击接地电阻测量装置的应用[J]. 内蒙古电力技术, 2017, 35(2): 50-53. WANG Haisheng, CAO Jianqiang, LIU Wenheng, et al. Application of measurement device for transmission line pylon impulse grounding resistance based on direct and induction lightning[J]. Inner Mongolia Electric Power, 2017, 35(2): 50-53.
[8] 王荣印. 输电线路杆塔典型接地材料散流特性研究[D]. 淄博: 山东理工大学, 2017.
[9] 李景丽, 李渊博, 武东亚, 等.考虑土壤电离的垂直接地极冲击散流性能分析[J]. 电瓷避雷器, 2015(6): 92-96. LI Jingli, LI Yuanbo, WU Dongya, et al. Analysis of vertical grounding electrodes impulse dispersing characteristics considering transient ionization phenomenon of soil[J]. Insulators and Surge Arresters, 2015(6): 92-96.
[10] 张宇. 土壤结构对接地极接地性能影响分析[D]. 郑州: 郑州大学, 2018.
[11] 王立平. 基于接地网保护的高效膨润土降阻剂制备及接地网故障分析[D]. 长沙: 长沙理工大学, 2016.
[12] 郭云峰. 接地降阻剂的发展与应用[J]. 东北电力技术, 2004(11): 37-38. GUO Yunfeng. The development and application of electrolyte for decreasing soil resistance[J]. Northeast Electric Power Technology, 2004(11): 37-38.
[13] 薛坚, 王建平. 物理降阻剂降阻机理研究[J]. 电网技术, 2007(s1): 95-99. XUE Jian, WANG Jianping. Research on resistance-reducing mechanism of physical resistance-reducing agent[J]. Power System Technology, 2007(s1): 95-99.
[14] 何善庆. 降阻剂的开发和应用[J]. 电世界, 1996, 37(5): 1-3. HE Shanqing. Development and application of resistance-reducing agent[J]. Electrical World, 1996, 37(5): 1-3.
[15] 李红. 缓蚀型土壤降阻剂的制备及性能研究[D]. 吉林: 东北电力大学, 2017.
[16] 张万友, 李红, 隋兴东, 等.钢接地极在降阻剂中的腐蚀研究进展[J]. 腐蚀科学与防护技术, 2017, 29(1): 80-84. ZHANG Wanqing, LI Hong, SUI Xingdong, et al. Research progress on corrosion of steel in earth resistance reducing agents for grounding electrode[J]. Corrosion Science and Protection Technology, 2017, 29(01): 80-84.
[17] 佟继春, 田峻, 郭艳军, 等. 山区输电杆塔接地电阻特性分析[J]. 智慧电力, 2018, 46(01): 71-76. TONG Jidong, TIAN Jun, GUO Yanjun, et al. Grounding resistance characteristics analysis of transmission line tower in mountainous regions[J]. Smart Power, 2018, 46(1): 71-76.
[18] 田野, 朱志平, 周艺, 等. 新型大分子降阻剂的制备和性能研究[J]. 电瓷避雷器, 2017(2): 33-38. TIAN Ye, ZHU Zhiping, ZHOU Yi, et al. Study on the preparation and performance of new type of macromolecular resistance reducing agent[J]. Insulators and Surge Arresters, 2017(2): 33-38.
[19] 牛晓民. 电力系统接地分析软件CDEGS简介[J]. 华北电力技术, 2004(12): 29-31. NIU Xiaomin. Introduction of CDEGS[J]. North China Electric Power, 2004(12): 29-31.
[20] 曾嵘, 陈水明. CDEGS 软件包及其在多层土壤接地设计中的应用[J]. 华东电力, 1998(6): 31-34. ZENG Rong, CHEN Shuiming. CDEGS Package and its application in multilayer soil grounding design[J]. East China Electric Power, 1998(6): 31-34.
[21] 陈伟军. 变电站接地网新型降阻技术研究与应用[D]. 广州: 华南理工大学, 2016.
[22] 龚若涵. HM-JD-L28型新型石墨复合接地体与常规降阻方式降阻效果的对比分析[J]. 电瓷避雷器, 2015(6): 69-72. GONG Ruohan. Comparative analysis of HM-JD-L28 composited grounding conductor and routine grounding resistance reducing measure[J]. Insulators and Surge Arresters, 2015(6): 69-72.
[23] 高竹青, 曹晓斌, 杜俊乐, 等.垂直接地极对杆塔冲击接地电阻的影响研究[J]. 高压电器, 2018, 54(4): 182-187. GAO Zhuqing, CAO Xiaobin, DU Junle, et al. Study on the effect of vertical rod on reducing tower's impulse grounding resistance[J]. High Voltage Apparatus, 2018, 54(4): 182-187.
[24] 李腾飞, 罗日成, 潘俊文, 等.降阻剂对垂直型直流接地极电气性能参数影响分析[J]. 电瓷避雷器, 2018(1): 132-136. LI Tengfei, LUO Richeng, PAN Junwen, et al. Analysis of influence of resistance reducing material on electrical performance parameters of vertical DC ground electrode[J]. Insulators and Surge Arresters, 2018(1): 132-136.
[25] 陈伟, 李少东, 孙勇, 等.同心双圆型特高压垂直接地极优化设计[J].南方电网技术,2018,12(5):17-23. CHEN Wei, LI Shaodong, SUN Yong, etal. Optimization design of concentric double circular UHVDC vertical grounding electrode[J].Southern Power System Technology, 2018, 12(5): 17-23.

备注/Memo

备注/Memo:
收稿日期:2018-09-28 作者简介:马超(1987—),男,硕士,工程师。研究方向:输电线路运维管理。 基金项目:国家创新研究群体基金资助项目(编号:51021005)。
更新日期/Last Update: 2019-12-10