[1]祝 贺,赵浩然.复合绝缘子伞裙破损状态下的电位电场仿真研究[J].电瓷避雷器,2016,139(05):1-6.[doi:10.16188/j.isa.1003-8337.2016.05.001 ]
 ZHU He,ZHAO Haoran.Potential and Electric Field Simulation Study of Composite Insulators with Shed Damage Conditions[J].,2016,139(05):1-6.[doi:10.16188/j.isa.1003-8337.2016.05.001 ]
点击复制

复合绝缘子伞裙破损状态下的电位电场仿真研究()
分享到:

《电瓷避雷器》[ISSN:1006-6977/CN:61-1281/TN]

卷:
139卷
期数:
2016年05期
页码:
1-6
栏目:
绝艳子
出版日期:
2016-10-31

文章信息/Info

Title:
Potential and Electric Field Simulation Study of Composite Insulators with Shed Damage Conditions
作者:
祝 贺赵浩然
东北电力大学 建筑工程学院,吉林 吉林 132012
Author(s):
ZHU HeZHAO Haoran
Institute of civil engineering,Northeast Electric Power University,Jilin 132012,China
关键词:
复合绝缘子电场强度电位分布破损程度破损位置
Keywords:
composite insulator electric field potential distribution damage degree damage location
DOI:
10.16188/j.isa.1003-8337.2016.05.001
摘要:
为研究复合绝缘子伞裙破损对电场强度和电位分布的影响,以FXBW4-10/70型绝缘子为研究对象,应用有限元ANSYS软件分别建立了不同破损程度、不同破损位置的三维仿真模型,使用静电场分析法计算了相应沿面和干弧路径上的电位和电场强度。结果表明:低压型绝缘子电位分布相对均衡,且受长短伞裙影响呈阶梯状下降趋势;沿面路径上的最大场强出现在导线端伞裙尖端处;在伞裙与柱体的交界处,会发生场强的局部增加,靠近高压端的伞裙下表面的场强畸变最大;在分析不同破损程度时,沿面最大场强并不随着破损程度增加而增加,而是受沿面尖锐程度影响,但随着破损程度增加,低压端场强变大,绝缘子电气性能下降;在分析不同破损位置时,伞裙根部破损时电场畸变更大,沿面最大场强也大于尖端破损和中部破损,因此伞裙根部破损的危害性更大。
Abstract:
In order to research the influence of different damage degrees and locations on electric field and potential distribution of composite insulator shed,taking insulator model FXBW4-10/70 as research objective, the finite element method is used to established simulation model of different damage degrees and locations. By using Electrostatic field analysis, the corresponding electric field and potential along insulator surface and dry arc path are calculated.Research result shows that the potential distribution of low voltage insulator tends to be relatively balanced, and it shows a ladder-shape downward trend influenced by short and long insulator sheds. The maximum electric field along the surface occurs on the top of shed at the high voltage terminal. At the junction between the shed and the cylinder,there will be a partial increase of electric field;The maximum electrical field distortion can be found at the lower surface of the shed close to the high voltage terminal.When analyzing the different levels of damage, the maximum field of insulator surface will not increase along with the increase of damage degrees. On the contrary,it is affected by the sharpness of the insulator surface.But with the increase of the damage degrees, the electric field at the low voltage terminal will increase as well, and the electric performance of the insulator will be decreased.In the analysis of different damage locations,when the root of shed is damaged the electrical field distortion will be severe, as the maximum electric field of surface is bigger than sophisticated part damage and middle part.Consequently,damages to the shed root will bring more severity.

参考文献/References:

[1] 关志成,彭功茂,王黎明,等. 复合绝缘子的应用及关键技术研究[J]. 高电压技术,2011,37(3):513-519. GUAN Zhicheng,PENG Gongmao,WANG Liming,et al.Application and key technical study of composite insulators[J]. High Voltage Engineering,2011,37(3):513-519.
[2] 梁英,崔春艳,易春芳,等. 复合绝缘子老化状态精细评估中的取样方法[J]. 电网技术,2015,39(2):530-535. LIANG Ying,CUI Chunyan,YI Chunfang,et al. Sampling method for aging state fine-estimation of composite insulators[J]. Power System Technology,2015,39(2):530-535.
[3] 张 浩,朱弘钊,岳灵平,等. 复合绝缘子憎水性带电检测系统研究[J]. 电瓷避雷器,2013(5):36-43. ZHANG Hao,ZHU Hongzhao,YUE Lingping,et al. Research of on-line survey system for the hydrophobicity of composite insulator[J]. Insulators and Surge Arresters,2013(5):36-43.
[4] 汪佛池,黄成才,李永刚,等. 硅橡胶复合绝缘子老化状态评估新依据[J]. 电网技术,2014,38(11):3224-3229. WANG Fochi,HUANG Chengcai,LI Yong,et al. A new criterion to assess aging status of silicon rubber composite insulator[J]. Power System Technology,2014,38(11):3224-3229.
[5] 王希林,朱正一,马国详,等. 强风区复合绝缘子伞裙撕裂研究[J]. 电网技术,2013,37(10):2845-2849. WANG Xilin,ZHU Zhengyi,MA Guoxiang,et al. Research on shed crack of composite insulators used in strong wind area[J]. Power System Technology,2013,37(10):2845-2849 .
[6] ANDREW J PHILLIPS,JOHN Kuffel,ANTHONY Baker,et al. Electric fields on AC composite transmission line insulators[J]. IEEE Transactions on Power Delivery,2008,23(2):823-830.
[7] 孙竹森,李震宇,张建斌,等. 1 000 kV特高压交流输电线路复合绝缘子鸟害原因分析及对策[J]. 电网技术,2009,33(10):52-54. SUN Zhusen,LI Zhenyu,ZHANG Jianbin,et al. Analysis on bird pest of composite insulators for 1 000 kV AC transmission line and its countermeasures[J]. Power System Technology,2009,33(10):52-54.
[8] 张鹏飞,邓慰,朱弘钊,等. 雾霾天气对绝缘子泄漏电流的影响[J]. 电瓷避雷器,2014(5):1-5. ZHANG Pengfei,DENG Wei,ZHU Hongzhao,et al. Effect of haze weather on leakage current of insulators[J]. Insulators and Surge Arresters,2014(5):1-5.
[9] FARZANEH M,ZHANG J. A multi-arc model for predicting AC critical flash over voltage of ice-covered insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(6):1401-1409.
[10] NDIAYE I,FARZANEH M,FOFANA I. Study of the development of positive streamers along an ice surface[J].IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(6):1436-1445.
[11] CHISHOLM W A. Insulator leakage distance dimensioning in areas of winter contamination using cold-fog test results[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(6):1455-1461.
[12] 刘向实. 污秽条件下复合绝缘子电场仿真研究[J]. 电瓷避雷器,2014(5):31-36. LIU Xiangshi. Study on electric field distribution of composite insulator under pollution conditions[J]. Insulators and Surge Arresters,2014(5):31-36.
[13] 蒋兴良,赵世华. 覆冰绝缘子串泄漏电流与覆冰量及覆冰水电导率的关系[J]. 电工技术学报,2014,29(10):297-303. JIANG Xingliang,ZHAO Shihua. Relationship between leakage current of ice-covered insulators icing weight, and icing water conductivity[J]. Transaction of China Electrotechnical Society,2014,29(10):297-303.
[14] 邱大庆. 覆冰、污秽条件下复合绝缘子电场分布研究[J].电瓷避雷器,2015(1):26-30. QIU Daqing. Study of the field distribution of composite insulator in icing and contamination conditions[J]. Insulators and Surge Arresters,2015(1):26-30.
[15] 盛道伟. 覆冰绝缘子闪络机理的研究与发展[J]. 电瓷避雷器,2014(6):50-54. SHENG Daowei. Present study and progress on flashover mechanism of iced insulators[J]. Insulators and Surge Arresters,2014(6):50-54.
[16] 王星星,罗潇,齐磊,等. 高压直流换流阀用绝缘子表面电场计算及均压环设计[J]. 电网技术,2014,38(2):289-296. WANG Xingxing,LUO Xiao,QI Lei,et al. Calculation of electric field distribution along composite insulator and design of grading ring of HVDC converter valve[J]. Power System Technology,2014,38(2):289-296.
[17] 徐志钮,律方成. 绝缘材料及其参数对绝缘子表面电场强度和电位分布的影响[J]. 电网技术,2011,35(9):152-157. XU Zhiniu,LU Fangcheng. Influence of insulating materials and their parameters on surface electric field intensity and potential distribution of insulators[J]. Power System Technology,2011,35(9):152-157.
[18] 吴广宁,杨坤松,高国强,等. 电动车组车顶复合绝缘子内部间隙电场分析[J]. 高电压技术,2014,40(10):3252-3259. WU Guangning,YANG Kunsong,GAO Guoqiang,et al.Analysis of the electric field through internal gap of electric multiple unit roof composite insulator[J]. High Voltage Engineering,2014,40(10):3252-3259.
[19] 黎卫国,郝艳捧,熊国锟,等. 覆冰复合绝缘子电位分布有限元仿真[J]. 电工技术学报,2012,27(12):29-35. LI Weiguo,HAO Yanpeng,XIONG Guokun,et al. Relationship between leakage current of ice-covered insulators icing weight, and icing water conductivity[J]. Transaction of China Electrotechnical Society,2012,27(12):29-35.
[20] 张乔根,周建博,奚海波,等. 复合绝缘子表面不同状态时的放电特征[J]. 高电压技术,2014,40(4):987-994. ZHANG Qiaogen,ZHOU Jianbo,XI Haibo,et al. Discharge features of composite insulator in different surface states[J].High Voltage Engineering,2014,40(4):987-994.

备注/Memo

备注/Memo:
收稿日期:2015-08-31 作者简介:祝贺(1979—),男,教授,硕士生导师,研究方向为电网运行设备检测及故障修复新技术。 基金项目:吉林市科技创新发展计划项目(编号:201464058)。
更新日期/Last Update: 1900-01-01